ﻻ يوجد ملخص باللغة العربية
We have investigated the magnetic properties of Mn and Cu substituted SrZnO2 single crystals (SrZn0.99Mn0.01O2 and SrZn0.99Cu0.01O2). We observed signatures of weak ferromagnetism as a sharp increase of magnetic susceptibility below 5 K even in the low percentage (x= 0.01) of Mn substituted single crystals. Magnetic susceptibility data measured parallel or perpendicular to the ab plane yield anisotropic behavior with Curie Weiss temperature of about -320 K and -410 K, respectively, suggesting the presence of strong antiferromagnetic couplings among Mn atoms at high temperatures, similar to the Mn doped ZnO and Fe doped BaTiO3 samples. In contrast, the SrZn0.99Cu0.01O2 crystal shows paramagnetic behavior down to 2 K.
Using the first-principles density-functional theory plan-wave pseudopotential method, we investigate the structure and magnetism in 25% Mn substitutive and interstitial doped monoclinic, tetragonal and cubic ZrO2 systematically. Our studies show tha
The magnetism in 12.5% and 25% Mn delta-doped cubic GaN has been investigated using the density-functional theory calculations. The results show that the single-layer delta-doping and half-delta-doping structures show robust ground state half-metalli
We have studied the electronic structure of Zn$_{0.9}$Fe$_{0.1}$O nano-particles, which have been reported to show ferromagnetism at room temperature, by x-ray photoemission spectroscopy (XPS), resonant photoemission spectroscopy (RPES), x-ray absorp
The search for oxide-based room-temperature ferromagnetism has been one of the holy grails in condensed matter physics. Room-temperature ferromagnetism observed in Nb-doped SrTiO3 single crystals is reported in this Rapid Communication. The ferromagn
Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding a thin Mn-film as a {delta}-doped layer in group-IV matrix. The Mn-layer consists of a dense layer of monoatomic Mn-wires, which are oriented perpendicular to the Si(001)-(2x1) dim