ﻻ يوجد ملخص باللغة العربية
The scale of scientific High Performance Computing (HPC) and High Throughput Computing (HTC) has increased significantly in recent years, and is becoming sensitive to total energy use and cost. Energy-efficiency has thus become an important concern in scientific fields such as High Energy Physics (HEP). There has been a growing interest in utilizing alternate architectures, such as low power ARM processors, to replace traditional Intel x86 architectures. Nevertheless, even though such solutions have been successfully used in mobile applications with low I/O and memory demands, it is unclear if they are suitable and more energy-efficient in the scientific computing environment. Furthermore, there is a lack of tools and experience to derive and compare power consumption between the architectures for various workloads, and eventually to support software optimizations for energy efficiency. To that end, we have performed several physical and software-based measurements of workloads from HEP applications running on ARM and Intel architectures, and compare their power consumption and performance. We leverage several profiling tools (both in hardware and software) to extract different characteristics of the power use. We report the results of these measurements and the experience gained in developing a set of measurement techniques and profiling tools to accurately assess the power consumption for scientific workloads.
The quest to understand the fundamental building blocks of nature and their interactions is one of the oldest and most ambitious of human scientific endeavors. Facilities such as CERNs Large Hadron Collider (LHC) represent a huge step forward in this
A large multitude of scientific computing tools is available today. This article gives an overview of available tools and explains the main application fields. In addition basic principles of number representations in computing and the resulting trun
SND detector operates at the VEPP-2000 collider (BINP, Novosibirsk). To improve events selection for physical analysis and facilitate online detector control we developed new data quality monitoring (DQM) system. The system includes online and reproc
Much of the current focus in high-performance computing is on multi-threading, multi-computing, and graphics processing unit (GPU) computing. However, vectorization and non-parallel optimization techniques, which can often be employed additionally, a
Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to dev