ترغب بنشر مسار تعليمي؟ اضغط هنا

The first planet detected in the WTS: an inflated hot-Jupiter in a 3.35 day orbit around a late F-star [ERRATUM]

200   0   0.0 ( 0 )
 نشر من قبل Michele Cappetta
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope (UKIRT) in August 2007. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J ~ 16 were constructed for ~60000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope (HET) allowed us to estimate the spectroscopic parameters of the host star, a late-F main sequence dwarf (V=16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 days, a planetary mass of 4.01 +- 0.35 Mj and a planetary radius of 1.49+0.16-0.18 Rj. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 Mj. The high irradiation from the host star ranks the planet in the pM class.



قيم البحث

اقرأ أيضاً

We report the discovery by the WASP transit survey of a highly-irradiated, massive (2.242 +/- 0.080 MJup) planet which transits a bright (V = 10.6), evolved F8 star every 2.9 days. The planet, WASP-71b, is larger than Jupiter (1.46 +/- 0.13 RJup), bu t less dense (0.71 +/- 0.16 {rho}Jup). We also report spectroscopic observations made during transit with the CORALIE spectrograph, which allow us to make a highly-significant detection of the Rossiter-McLaughlin effect. We determine the sky-projected angle between the stellar-spin and planetary-orbit axes to be {lambda} = 20.1 +/- 9.7 degrees, i.e. the system is aligned, according to the widely-used alignment criteria that systems are regarded as misaligned only when {lambda} is measured to be greater than 10 degrees with 3-{sigma} confidence. WASP-71, with an effective temperature of 6059 +/- 98 K, therefore fits the previously observed pattern that only stars hotter than 6250 K are host to planets in misaligned orbits. We emphasise, however, that {lambda} is merely the sky-projected obliquity angle; we are unable to determine whether the stellar-spin and planetary-orbit axes are misaligned along the line-of-sight. With a mass of 1.56 +/- 0.07 Msun, WASP-71 was previously hotter than 6250 K, and therefore might have been significantly misaligned in the past. If so, the planetary orbit has been realigned, presumably through tidal interactions with the cooling stars growing convective zone.
275 - D. Bayliss , G. Zhou , K. Penev 2013
We report the discovery by the HATSouth survey of HATS-3b, a transiting extrasolar planet orbiting a V=12.4 F-dwarf star. HATS-3b has a period of P = 3.5479d, mass of Mp = 1.07MJ, and radius of Rp = 1.38RJ. Given the radius of the planet, the brightn ess of the host star, and the stellar rotational velocity (vsini = 9.0km/s), this system will make an interesting target for future observations to measure the Rossiter-McLaughlin effect and determine its spin-orbit alignment. We detail the low/medium-resolution reconnaissance spectroscopy that we are now using to deal with large numbers of transiting planet candidates produced by the HATSouth survey. We show that this important step in discovering planets produces logg and Teff parameters at a precision suitable for efficient candidate vetting, as well as efficiently identifying stellar mass eclipsing binaries with radial velocity semi-amplitudes as low as 1 km/s.
We report here the discovery of a hot Jupiter at an orbital period of $3.208666pm0.000016$ days around TOI-1789 (TYC 1962-00303-1, $TESS_{mag}$ = 9.1) based on the TESS photometry, ground-based photometry, and high-precision radial velocity observati ons. The high-precision radial velocity observations were obtained from the high-resolution spectrographs, PARAS at Physical Research Laboratory (PRL), India, and TCES at Thuringer Landessternwarte Tautenburg (TLS), Germany, and the ground-based transit observations were obtained using the 0.43~m telescope at PRL with the Bessel-$R$ filter. The host star is a slightly evolved ($log{g_*}$ = $3.939^{+0.024}_{-0.046}$), late F-type ($T_{eff}$ = $5984^{+55}_{-57}$ K), metal-rich star ([Fe/H] = $0.370^{+0.073}_{-0.089}$ dex) with a radius of {ensuremath{$R_{*}$}} = $2.172^{+0.037}_{-0.035}$ (R_odot) located at a distance of $223.56^{+0.91}_{-0.90}$ pc. The simultaneous fitting of the multiple light curves and the radial velocity data of TOI-1789 reveals that TOI-1789b has a mass of $M_{P}$ = $0.70pm0.16 $ $M_{J}$, a radius of $R_{P}$ = $1.40^{+0.22}_{-0.13}$ $R_{J}$, and a bulk density of $rho_P$ = $0.31^{+0.15}_{-0.13}$ g cm$^{-3}$ with an orbital separation of a = $0.04873^{+0.00065}_{-0.0016}$ AU. This puts TOI-1789b in the category of inflated hot Jupiters. It is one of the few nearby evolved stars with a close-in planet. The detection of such systems will contribute to our understanding of mechanisms responsible for inflation in hot Jupiters and also provide an opportunity to understand the evolution of planets around stars leaving the main sequence branch.
We report the independent discovery and characterisation of a hot Jupiter in a 4.5-d, transiting orbit around the star TYC 7282-1298-1 ($V$ = 10.8, F5V). The planet has been pursued by the NGTS team as NGTS-2b and by ourselves as WASP-179b. We charac terised the system using a combination of photometry from WASP-South and TRAPPIST-South, and spectra from CORALIE (around the orbit) and HARPS (through the transit). We find the planets orbit to be nearly aligned with its stars spin. From a detection of the Rossiter-McLaughlin effect, we measure a projected stellar obliquity of $lambda = -19 pm 6^circ$. From line-profile tomography of the same spectra, we measure $lambda = -11 pm 5^circ$. We find the planet to have a low density ($M_{rm P}$ = 0.67 $pm$ 0.09 $M_{rm Jup}$, $R_{rm P}$ = 1.54 $pm$ 0.06 $R_{rm Jup}$), which, along with its moderately bright host star, makes it a good target for transmission spectroscopy. We find a lower stellar mass ($M_*$ = $1.30 pm 0.07$ $M_odot$) than reported by the NGTS team ($M_*$ = $1.64 pm 0.21$ $M_odot$), though the difference is only $1.5$ $sigma$.
We report the discovery of NGTS-2b, an inflated hot-Jupiter transiting a bright F5V star (2MASS J14202949-3112074; $T_{rm eff}$=$6478^{+94}_{-89}$ K), discovered as part of the Next Generation Transit Survey (NGTS). The planet is in a P=4.51 day orbi t with mass $0.74^{+0.13}_{-0.12}$ M$_{J}$, radius $1.595^{+0.047}_{-0.045}$ R$_{J}$ and density $0.226^{+0.040}_{-0.038}$ g cm$^{-3}$; therefore one of the lowest density exoplanets currently known. With a relatively deep 1.0% transit around a bright V=10.96 host star, NGTS-2b is a prime target for probing giant planet composition via atmospheric transmission spectroscopy. The rapid rotation ($vsin$i=$15.2pm0.8$ km s$^{-1}$) also makes this system an excellent candidate for Rossiter-McLaughlin follow-up observations, to measure the sky-projected stellar obliquity. NGTS-2b was confirmed without the need for follow-up photometry, due to the high precision of the NGTS photometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا