ﻻ يوجد ملخص باللغة العربية
We report a photoemission and x-ray absorption study on Au1-xPtxTe2 (x = 0 and 0.35) triangular lattice in which superconductivity is induced by Pt substitution for Au. Au 4f and Te 3d core-level spectra of AuTe2 suggests a valence state of Au2+(Te2)2-, which is consistent with its distorted crystal structure with Te-Te dimers and compressed AuTe6 otahedra. On the other hand, valence-band photoemission spectra and pre-edge peaks of Te 3d absorption edge indicate that Au 5d bands are almost fully occupied and that Te 5p holes govern the transport properties and the lattice distortion. The two apparently conflicting pictures can be reconciled by strong Au 5d/Au 6s-Te 5p hybridization. Absence of a core-level energy shift with Pt substitution is inconsistent with the simple rigid band picture for hole doping. The Au 4f core-level spectrum gets slightly narrow with Pt substitution, indicating that the small Au 5d charge modulation in distorted AuTe2 is partially suppressed.
The electronic properties of the carbon substituted MgB$_2$ single crystals are reported. The carbon substitution drops T$_c$ below 2 K. In-plane resistivity shows a remarkable increase in residual resistivity by C-substitution, while the change of i
We examined Lead (Pb) Substitution effect on a single crystal of a layered superconductor LaO0.5F0.5BiS2. Pb concentration dependence of the lattice constant showed slight anomaly at about 8% and 9% substitution of Pb for Bi. These samples showed the
Electronically driven nematic order is often considered as an essential ingredient of high-temperature superconductivity. Its elusive nature in iron-based supercon- ductors resulted in a controversy not only as regards its origin but also as to the d
The role of Co substitution in the low-energy electronic structure of Ca(Fe$_{0.944}$Co$_{0.056}$)$_2$As$_2$ is investigated by resonant photoemission spectroscopy and density functional theory. The Co 3d-state center-of-mass is observed at 250 meV h
We report LDA calculated band structure, densities of states and Fermi surfaces for recently discovered Pt-pnictide superconductors APt3P (A=Ca,Sr,La), confirming their multiple band nature. Electronic structure is essentially three dimensional, in c