ﻻ يوجد ملخص باللغة العربية
We propose a novel approach for observing cosmic rays at ultra-high energy ($>10^{18}$~eV) by repurposing the existing network of smartphones as a ground detector array. Extensive air showers generated by cosmic rays produce muons and high-energy photons, which can be detected by the CMOS sensors of smartphone cameras. The small size and low efficiency of each sensor is compensated by the large number of active phones. We show that if user adoption targets are met, such a network will have significant observing power at the highest energies.
We estimate the effective area available for cosmic-ray detection with a network of smartphones under optimistic conditions. To measure cosmic-ray air showers with a minimally-adequate precision and a detection area similar to existing ground-based d
We develop a model for explaining the data of Pierre Auger Observatory (Auger) for Ultra High Energy Cosmic Rays (UHECR), in particular, the mass composition being steadily heavier with increasing energy from 3 EeV to 35 EeV. The model is based on th
The Galactic magnetic field, locally observed to be on the order of a few $mu$G, is sufficiently strong to induce deflections in the arrival directions of ultra-high energy cosmic rays. We present a method that establishes measures of self-consistenc
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written versi
Radio waves, perhaps because they are uniquely transparent in our terrestrial atmosphere, as well as the cosmos beyond, or perhaps because they are macroscopic, so the basic instruments of detection (antennas) are easily constructable, arguably occup