ﻻ يوجد ملخص باللغة العربية
The transport and magnetic properties of the tetragonal Fe$_{1+delta}$S were investigated using magnetoresistivity and magnetization within 2$leq Tleq $300 K, $Hleq$70 kOe and $Pleq$ 3.0 GPa. In addition, room-temperature X-ray diffraction and photoelectron spectroscopy were also applied. In contrast to previously reported nonmetallic character, Fe$_{1+delta}$S is intrinsically metallic but due to a presence of a weak localization such metallic character is not exhibited below room temperature. An applied pressure reduces strongly this additional resistive contribution and as such enhances the temperature range of the metallic character which, for $sim$3 GPa, is evident down to 75 K. The absence of superconductivity as well as the mechanism behind the weak localization will be discussed.
Using density functional plus dynamical mean-field theory method (DFT+DMFT) with full self-consistency over the charge density, we study the effect of electronic correlations on the electronic structure, magnetic properties, orbital-dependent band re
The in-plane ($rho_{ab}$) and c-axis ($rho_c$) resistivities, and the magnetoresistivity of single crystals $Na_xCoO_2$ with x = 0.7, 0.5 and 0.3 were studied systematically. $rho_{ab}(T)$ shows similar temperature dependence between $Na_{0.3}CoO_2$
In the temperature-concentration phase diagram of most iron-based superconductors, antiferromagnetic order is gradually suppressed to zero at a critical point, and a dome of superconductivity forms around that point. The nature of the magnetic phase
Single crystals of Ca(Fe1-xRux)2As2 (0<x<0.065) and Ca1-yLay(Fe0.973Ru0.027)2As2 (0<y<0.2) have been synthesized and studied with respect to their structural, electronic and magnetic properties. The partial substitution of Fe by Ru induces a decrease
Pulsed laser deposition, a non-equilibrium thin-film growth technique, was used to stabilize metastable tetragonal iron sulfide (FeS), the bulk state of which is known as a superconductor with a critical temperature of 4 K. Comprehensive experiments