ﻻ يوجد ملخص باللغة العربية
Redox-based resistive switching devices (ReRAM) are an emerging class of non-volatile storage elements suited for nanoscale memory applications. In terms of logic operations, ReRAM devices were suggested to be used as programmable interconnects, large-scale look-up tables or for sequential logic operations. However, without additional selector devices these approaches are not suited for use in large scale nanocrossbar memory arrays, which is the preferred architecture for ReRAM devices due to the minimum area consumption. To overcome this issue for the sequential logic approach, we recently introduced a novel concept, which is suited for passive crossbar arrays using complementary resistive switches (CRSs). CRS cells offer two high resistive storage states, and thus, parasitic sneak currents are efficiently avoided. However, until now the CRS-based logic-in-memory approach was only shown to be able to perform basic Boolean logic operations using a single CRS cell. In this paper, we introduce two multi-bit adder schemes using the CRS-based logic-in-memory approach. We proof the concepts by means of SPICE simulations using a dynamical memristive device model of a ReRAM cell. Finally, we show the advantages of our novel adder concept in terms of step count and number of devices in comparison to a recently published adder approach, which applies the conventional ReRAM-based sequential logic concept introduced by Borghetti et al.
This paper presents a novel resistive-only Binary and Ternary Content Addressable Memory (B/TCAM) cell that consists of two Complementary Resistive Switches (CRSs). The operation of such a cell relies on a logic$rightarrow$ON state transition that enables this novel CRS application.
For decades, advances in electronics were directly driven by the scaling of CMOS transistors according to Moores law. However, both the CMOS scaling and the classical computer architecture are approaching fundamental and practical limits, and new com
In this work we propose an effective preconditioning technique to accelerate the steady-state simulation of large-scale memristor crossbar arrays (MCAs). We exploit the structural regularity of MCAs to develop a specially-crafted preconditioner that
Due to high power consumption and difficulties with minimizing the CMOS transistor size, molecular electronics has been introduced as an emerging technology. Further, there have been noticeable advances in fabrication of molecular wires and switches
A unique set of characteristics are packed in emerging nonvolatile reduction-oxidation (redox)-based resistive switching memories (ReRAMs) such as their underlying stochastic switching processes alongside their intrinsic highly nonlinear current-volt