ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise measurements on a quantum phase transition in antiferromagnetic spinor Bose-Einstein condensates

193   0   0.0 ( 0 )
 نشر من قبل Anshuman Vinit
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate, both experimentally and theoretically, the quench dynamics of antiferromagnetic spinor Bose-Einstein condensates in the vicinity of a zero temperature quantum phase transition at zero quadratic Zeeman shift q. Both the rate of instability and the associated finite wavevector of the unstable modes - show good agreement with predictions based upon numerical solutions to the Bogoliubov de-Gennes equations. A key feature of this work is inclusion of magnetic field inhomogeneities that smooth the phase transition. Once these were removed, we observed a dramatic sharpening of the transition point, which could then be resolved within a quadratic Zeeman shift of only 1-2 Hz. Our results point to the use of dynamics, rather than equilibrium quantities for high precision measurements of phase transitions in quantum gases.



قيم البحث

اقرأ أيضاً

99 - A. Vinit , C. Raman 2016
We have experimentally investigated the quench dynamics of antiferromagnetic spinor Bose-Einstein condensates in the vicinity of a zero temperature quantum phase transition at zero quadratic Zeeman shift $q$. The rate of instability shows good agreem ent with predictions based upon solutions to the Bogoliubov de-Gennes equations. A key feature of this work was removal of magnetic field inhomogeneities, resulting in a steep change in behavior near the transition point. The quadratic Zeeman shift at the transition point was resolved to 250 milliHertz uncertainty, equivalent to an energy resolution of $k_B times 12$ picoKelvin. To our knowledge, this is the first demonstration of sub-Hz precision measurement of a phase transition in quantum gases. Our results point to the use of dynamics, rather than equilibrium studies for high precision measurements of phase transitions in quantum gases.
Excited-state quantum phase transitions (ESQPTs) extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for ESQPTs poses however a major ch allenge. We introduce spinor Bose-Einstein condensates as a versatile platform for studies of ESQPTs. Based on the mean-field dynamics, we define a topological order parameter that distinguishes between excited-state phases, and discuss how to interferometrically access the order parameter in current experiments. Our work opens the way for the experimental characterization of excited-state quantum phases in atomic many-body systems.
75 - Xiao-Lu Yu , Boyang Liu 2021
We investigate the polarons formed by immersing a spinor impurity in a ferromagnetic state of $F=1$ spinor Bose-Einstein condensate. The ground state energies and effective masses of the polarons are calculated in both weak-coupling regime and strong -coupling regime. In the weakly interacting regime the second order perturbation theory is performed. In the strong coupling regime we use a simple variational treatment. The analytical approximations to the energy and effective mass of the polarons are constructed. Especially, a transition from the mobile state to the self-trapping state of the polaron in the strong coupling regime is discussed. We also estimate the signatures of polaron effects in spinor BEC for the future experiments.
219 - Z. F. Xu , J. W. Mei , R. Lu 2010
We study the ground state phases for a mixture of two atomic spin-1 Bose-Einstein condensates (BECs) in the presence of a weak magnetic (B-) field. The ground state is found to contain a broken-axisymmetry (BA) phase due to competitions among intra- and inter-species spin exchange interactions and the linear Zeeman shifts. This is in contrast to the case of a single species spin- 1 condensate, where the axisymmetry breaking results from competitions among the linear and quadratic Zeeman shifts and the intra-species ferromagnetic interaction. All other remaining ground state phases for the mixture are found to preserve axisymmetry. We further elaborate on the ground state phase diagram and calculate their Bogoliubov excitation spectra. For the BA phase, there exist three Goldstone modes attempting to restore the broken U(1) and SO(2) symmetries.
The SU(1,1) interferometer was originally conceived as a Mach-Zehnder interferometer with the beam-splitters replaced by parametric amplifiers. The parametric amplifiers produce states with correlations that result in enhanced phase sensitivity. $F=1 $ spinor Bose-Einstein condensates (BECs) can serve as the parametric amplifiers for an atomic version of such an interferometer by collisionally producing entangled pairs of $left<F=1,m=pm1right|$ atoms. We simulate the effect of single and double-sided seeding of the inputs to the amplifier using the truncated-Wigner approximation. We find that single-sided seeding degrades the performance of the interferometer exactly at the phase the unseeded interferometer should operate the best. Double-sided seeding results in a phase-sensitive amplifier, where the maximal sensitivity is a function of the phase relationship between the input states of the amplifier. In both single and double-sided seeding we find there exists an optimal phase shift that achieves sensitivity beyond the standard quantum limit. Experimentally, we demonstrate a spinor phase-sensitive amplifier using a BEC of $^{23}$Na in an optical dipole trap. This configuration could be used as an input to such an interferometer. We are able to control the initial phase of the double-seeded amplifier, and demonstrate sensitivity to initial population fractions as small as 0.1%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا