ترغب بنشر مسار تعليمي؟ اضغط هنا

Perspective on completing natural inflation

151   0   0.0 ( 0 )
 نشر من قبل Bumseok Kyae
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a perspective on the inflation paths in 2-, 3-,,, N-flation models based on the ultraviolet completion in heterotic string theory, where a number of grand unification scale axions are used. The number of non-Abelian gauge groups for a natural inflation is restricted in string compactification, and we argue that the most plausible completion of natural inflation from a theory perspective is the 2-flation.



قيم البحث

اقرأ أيضاً

We propose a landscape of many axions, where the axion potential receives various contributions from shift symmetry breaking effects. We show that the existence of the axion with a super-Planckian decay constant is very common in the axion landscape for a wide range of numbers of axions and shift symmetry breaking terms, because of the accidental alignment of axions. The effective inflation model is either natural or multi-natural inflation in the axion landscape, depending on the number of axions and the shift symmetry breaking terms. The tension between BICEP2 and Planck could be due to small modulations to the inflaton potential or steepening of the potential along the heavy axions after the tunneling. The total duration of the slow-roll inflation our universe experienced is not significantly larger than $60$ if the typical height of the axion potentials is of order $(10^{16-17}{rm ,GeV})^4$.
We propose the natural inflation from the heterotic string theory on Swiss-Cheese Calabi-Yau manifold with multiple $U(1)$ magnetic fluxes. Such multiple $U(1)$ magnetic fluxes stabilize the same number of the linear combination of the universal axio n and Kahler axions and one of the Kahler axions is identified as the inflaton. This axion decay constant can be determined by the size of one-loop corrections to the gauge kinetic function of the hidden gauge groups, which leads effectively to the trans-Planckian axion decay constant consistent with the WMAP, Planck and/or BICEP2 data. During the inflation, the real parts of the moduli are also stabilized by employing the nature of the Swiss-Cheese Calabi-Yau manifold.
We propose a novel scenario of inflation, in which the inflaton is identified as the lightest mode of an angular field in a compactified fifth dimension. The periodic effective potential exhibits exponentially flat plateaus, so that a sub-Planckian f ield excursion without hilltop initial conditions is naturally realized. We can obtain consistent predictions with observations on the spectral index and the tensor-to-scalar ratio.
We propose a mechanism for the natural inflation with and without modulation in the framework of type IIB string theory on toroidal orientifold or orbifold. We explicitly construct the stabilization potential of complex structure, dilaton and Kahler moduli, where one of the imaginary component of complex structure moduli becomes light which is identified as the inflaton. The inflaton potential is generated by the gaugino-condensation term which receives the one-loop threshold corrections determined by the field value of complex structure moduli and the axion decay constant of inflaton is enhanced by the inverse of one-loop factor. We also find the threshold corrections can also induce the modulations to the original scalar potential for the natural inflation. Depending on these modulations, we can predict several sizes of tensor-to-scalar ratio as well as the other cosmological observables reported by WMAP, Planck and/or BICEP2 collaborations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا