ترغب بنشر مسار تعليمي؟ اضغط هنا

redMaPPer IV: Photometric Membership Identification of Cluster Galaxies with 1% Precision

41   0   0.0 ( 0 )
 نشر من قبل Eduardo Rozo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eduardo Rozo




اسأل ChatGPT حول البحث

In order to study the galaxy population of galaxy clusters with photometric data one must be able to accurately discriminate between cluster members and non-members. The redMaPPer cluster finding algorithm treats this problem probabilistically. Here, we utilize SDSS and GAMA spectroscopic membership rates to validate the redMaPPer membership probability estimates for clusters with $zin[0.1,0.3]$. We find small - but correctable - biases, sourced by three different systematics. The first two were expected a priori, namely blue cluster galaxies and correlated structure along the line of sight. The third systematic is new: the redMaPPer template fitting exhibits a non-trivial dependence on photometric noise, which biases the original redMaPPer probabilities when utilizing noisy data. After correcting for these effects, we find exquisite agreement ($approx 1%$) between the photometric probability estimates and the spectroscopic membership rates, demonstrating that we can robustly recover cluster membership estimates from photometric data alone. As a byproduct of our analysis we find that on average unavoidable projection effects from correlated structure contribute $approx 6%$ of the richness of a redMaPPer galaxy cluster. This work also marks the second public release of the SDSS redMaPPer cluster catalog.

قيم البحث

اقرأ أيضاً

We introduce a new effective strategy to assign group and cluster membership probabilities $P_{mem}$ to galaxies using photometric redshift information. Large dynamical ranges both in halo mass and cosmic time are considered. The method takes the mag nitude distribution of both cluster and field galaxies as well as the radial distribution of galaxies in clusters into account using a non-parametric formalism and relies on Bayesian inference to take photometric redshift uncertainties into account. We successfully test the method against 1,208 galaxy clusters within redshifts $z=0.05-2.58$ and masses $10^{13.29-14.80}~M_odot$ drawn from wide field simulated galaxy mock catalogs developed for the Euclid mission. Median purity $(55^{+17}_{-15})%$ and completeness $(95^{+5}_{-10})%$ are reached for galaxies brighter than 0.25$L_ast$ within $r_{200}$ of each simulated halo and for a statistical photometric redshift accuracy $sigma((z_s-z_p)/(1+z_s))=0.03$. The mean values $p=56%$ and $c=93%$ have sub-percent uncertainties. Accurate photometric redshifts ($sigma((z_s-z_p)/(1+z_s))lesssim0.05$) and robust estimates for the cluster redshift and the center coordinates are required. The method is applied to derive accurate richness estimates. A statistical comparison between the true ($N_{rm true}$) vs estimated richness ($lambda=sum P_{mem}$) yields on average to unbiased results, $Log(lambda/N_{rm true})=-0.0051pm0.15$. The scatter around the mean of the logarithmic difference between $lambda$ and the halo mass is 0.10~dex, for massive halos $gtrsim10^{14.5}~M_odot$. Our estimates could be useful to calibrate independent cluster mass estimates from weak lensing, SZ, and X-ray studies. Our method can be applied to any list of galaxy clusters or groups in both present and forthcoming surveys such as SDSS, CFHTLS, DES, LSST, and Euclid.
Open clusters belonging to star-forming complexes are the leftovers from the initial stellar generations. The study of these young systems provides constraints to models of star formation and evolution as well as to the properties of the Galactic dis c. We aimed at investigating NGC1981, a young open cluster in the Orion Nebula Region, using near-IR and BV (RI)C photometric data.We devised a method that accounts for the field contamination and allows to derive photometric membership for the cluster stars. A new cluster centre was determined by Gaussian fittings to the 2-D stellar distribution on the sky, and has been used used to obtain the radial stellar density profile and the structural parameters. Mass functions were computed for stars inside the cluster limiting radius and total mass estimated from them. Although more easily distinguished by its grouping of 6 relatively bright stars, an underlying population of faint pre-main sequence stars is evident in the cluster area. We showed that this population is related to the cluster itself rather than to the nearby Orion Nebula cluster. Additionally a fraction of the cluster low mass stars may have been evaporated from the region in its early evolution leading to the present sparse, loose structure. The estimated parameters of NGC1981 are core radius Rc = 0.09 +/- 0.04 pc, limiting radius Rlim = 1.21+/-0.11 pc, age t = 5+/-1 Myr, distance modulus (m-M)0 = 7.9+/-0.1 (380 +/- 17 pc), reddening E(B - V)= 0.07 +/- 0.03 and total mass m = 137 +/- 14 Mcdot.
The center determination of a galaxy cluster from an optical cluster finding algorithm can be offset from theoretical prescriptions or $N$-body definitions of its host halo center. These offsets impact the recovered cluster statistics, affecting both richness measurements and the weak lensing shear profile around the clusters. This paper models the centering performance of the RM~cluster finding algorithm using archival X-ray observations of RM-selected clusters. Assuming the X-ray emission peaks as the fiducial halo centers, and through analyzing their offsets to the RM~centers, we find that $sim 75pm 8 %$ of the RM~clusters are well centered and the mis-centered offset follows a Gamma distribution in normalized, projected distance. These mis-centering offsets cause a systematic underestimation of cluster richness relative to the well-centered clusters, for which we propose a descriptive model. Our results enable the DES Y1 cluster cosmology analysis by characterizing the necessary corrections to both the weak lensing and richness abundance functions of the DES Y1 redMaPPer cluster catalog.
We measure the alignment of the shapes of galaxy clusters, as traced by their satellite distributions, with the matter density field using the public redMaPPer catalogue based on SDSS-DR8, which contains 26 111 clusters up to z~0.6. The clusters are split into nine redshift and richness samples; in each of them we detect a positive alignment, showing that clusters point towards density peaks. We interpret the measurements within the tidal alignment paradigm, allowing for a richness and redshift dependence. The intrinsic alignment (IA) amplitude at the pivot redshift z=0.3 and pivot richness lambda=30 is A_{IA}^{gen}=12.6_{-1.2}^{+1.5}. We obtain tentative evidence that the signal increases towards higher richness and lower redshift. Our measurements agree well with results of maxBCG clusters and with dark-matter-only simulations. Comparing our results to IA measurements of luminous red galaxies, we find that the IA amplitude of galaxy clusters forms a smooth extension towards higher mass. This suggests that these systems share a common alignment mechanism, which can be exploited to improve our physical understanding of IA.
We describe updates to the redmapper{} algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to $150,mathrm{deg}^2$ of Science Verification (SV) data from the Dark E nergy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited, and contains 786 clusters with richness $lambda>20$ (roughly equivalent to $M_{rm{500c}}gtrsim10^{14},h_{70}^{-1},M_{odot}$) and $0.2<z<0.9$. The DR8 catalog consists of 26311 clusters with $0.08<z<0.6$, with a sharply increasing richness threshold as a function of redshift for $zgtrsim 0.35$. The photometric redshift performance of both catalogs is shown to be excellent, with photometric redshift uncertainties controlled at the $sigma_z/(1+z)sim 0.01$ level for $zlesssim0.7$, rising to $sim0.02$ at $zsim0.9$ in DES SV. We make use of emph{Chandra} and emph{XMM} X-ray and South Pole Telescope Sunyaev-Zeldovich data to show that the centering performance and mass--richness scatter are consistent with expectations based on prior runs of redmapper{} on SDSS data. We also show how the redmapper{} photoz{} and richness estimates are relatively insensitive to imperfect star/galaxy separation and small-scale star masks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا