ترغب بنشر مسار تعليمي؟ اضغط هنا

The parity-violating nucleon-nucleon force in the 1/N_c expansion

140   0   0.0 ( 0 )
 نشر من قبل Daniel Phillips
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Several experimental investigations have observed parity violation in nuclear systems-a consequence of the weak force between quarks. We apply the $1/N_c$ expansion of QCD to the P-violating T-conserving component of the nucleon-nucleon (NN) potential. We show there are two leading-order operators, both of which affect $vec{p}p$ scattering at order $N_c$. We find an additional four operators at $O(N_c^0 sin^2 theta_W)$ and six at $O(1/N_c)$. Pion exchange in the PV NN force is suppressed by $1/N_c$ and $sin^2 theta_W$, providing a quantitative explanation for its non-observation up to this time. The large-$N_c$ hierarchy of other PV NN force mechanisms is consistent with estimates of the couplings in phenomenological models. The PV observed in $vec{p}p$ scattering data is compatible with natural values for the strong and weak coupling constants: there is no evidence of fine tuning.



قيم البحث

اقرأ أيضاً

We apply the large-$N_c$ expansion to the time-reversal-invariance-violating (TV) nucleon-nucleon potential. The operator structures contributing to next-to-next-to-leading order in the large-$N_c$ counting are constructed. For the TV and parity-viol ating case we find a single operator structure at leading order. The TV but parity-conserving potential contains two leading-order terms, which however are suppressed by 1/$N_c$ compared to the parity-violating potential. Comparison with phenomenological potentials, including the chiral EFT potential in the TV parity-violating case, leads to large-$N_c$ scaling relations for TV meson-nucleon and nucleon-nucleon couplings.
The operator structures that can contribute to three-nucleon forces are classified in the 1/Nc expansion. At leading order in 1/Nc a spin-flavor independent term is present, as are the spin-flavor structures associated with the Fujita-Miyazawa three- nucleon force. Modern phenomenological three-nucleon forces are thus consistent with this O(Nc) leading force, corrections to which are suppressed by a power series in 1/Nc^2. A complete basis of operators for the three-nucleon force, including all independent momentum structures, is given explicitly up to next-to-leading order in the 1/Nc expansion.
Two-pion exchange parity-violating nucleon-nucleon interactions from recent effective field theories and earlier fully covariant approaches are investigated. The potentials are compared with the idea to obtain better insight on the role of low-energy constants appearing in the effective field theory approach and the convergence of this one in terms of a perturbative series. The results are illustrated by considering the longitudinal asymmetry of polarized protons scattering off protons, $vec{p}+p -> p+p$, and the asymmetry of the photon emission in radiative capture of polarized neutrons by protons, $vec{n}+p -> d+gamma$.
Parity violating (PV) contributions due to interference between $gamma$ and $Z^0$ exchange are calculated for pion electroproduction off the nucleon. A phenomenological model with effective Lagrangians is used to determine the resulting asymmetry for the energy region between threshold and $Delta(1232)$ resonance. The $Delta$ resonance is treated as a Rarita-Schwinger field with phenomenological $N Delta$ transition currents. The background contributions are given by the usual Born terms using the pseudovector $pi N$ Lagrangian. Numerical results for the asymmetry are presented.
The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/Nc expansion The channels considered are those with single pseudo-scalar meson emission. The analysis is carried out to sub-leading order in 1/Nc and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا