ﻻ يوجد ملخص باللغة العربية
We study how diffuse interstellar bands (DIBs) measured toward distance-distributed target stars can be used to locate dense interstellar (IS) clouds in the Galaxy and probe a line-of-sight (LOS) kinematical structure, a potential useful tool when gaseous absorption lines are saturated or not available in the spectral range. Cool target stars are numerous enough for this purpose. We have devised automated DIB fitting methods appropriate to cool star spectra and multiple IS components. The data is fitted with a combination of a synthetic stellar spectrum, a synthetic telluric transmission, and empirical DIB profiles. In parallel, stellar distances and extinctions are estimated self-consistently by means of a 2D Bayesian method, from spectroscopically-derived stellar parameters and photometric data. We have analyzed Gaia-ESO Survey (GES) and previously recorded spectra that probe between $sim$ 2 and 10 kpc long LOS in five different regions of the Milky Way. Depending on the observed spectral intervals, we extracted one or more of the following DIBs: $lambdalambda$ 6283.8, 6613.6 and 8620.4. For each field, we compared the DIB strengths with the Bayesian distances and extinctions, and the DIB Doppler velocities with the HI emission spectra. For all fields, the DIB strength and the target extinction are well correlated. In case of targets widely distributed in distance, marked steps in DIBs and extinction radial distance profiles match with each other and broadly correspond to the expected locations of spiral arms. For all fields, the DIB velocity structure agrees with HI emission spectra and all detected DIBs correspond to strong NaI lines. This illustrates how DIBs can be used to locate the Galactic interstellar gas and to study its kinematics at the kpc scale.
With the use of the data from archives, we studied the correlations between the equivalent widths of four diffuse interstellar bands (4430$r{A}$, 5780$r{A}$, 5797$r{A}$, 6284$r{A}$) and properties of the target stars (colour excess values, distances
We map the distribution and properties of the Milky Ways interstellar medium as traced by diffuse interstellar bands (DIBs) detected in near-infrared stellar spectra from the SDSS-III/APOGEE survey. Focusing exclusively on the strongest DIB in the H-
We present a detailed study of the QSO-galaxy pair [SDSS J163956.35+112758.7 (zq = 0.993) and SDSS J163956.38+112802.1 (zg = 0.079)] based on observations carried out using the Giant Meterwave Radio Telescope (GMRT), the Very Large Baseline Array (VL
DIBs are ubiquitous in stellar spectra. Traditionally, they have been studied through their extraction from hot stars, because of their smooth continuum. In an era where there are several going-on or planned massive Galactic surveys using multi-objec
We present observations which probe the small-scale structure of the interstellar medium using diffuse interstellar bands (DIBs). Towards HD 168075/6 in the Eagle Nebula, significant differences in DIB absorption are found between the two lines of si