ترغب بنشر مسار تعليمي؟ اضغط هنا

Designing single-beam multitrapping acoustical tweezers

172   0   0.0 ( 0 )
 نشر من قبل Glauber Silva Glauber Silva
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The concept of a single-beam acoustical tweezer device which can simultaneously trap microparticles at different points is proposed and demonstrated through computational simulations. The device employs an ultrasound beam produced by a circular focused transducer operating at 1 MHz in water medium. The ultrasound beam exerts a radiation force that may tweeze suspended microparticles in the medium. Simulations show that the acoustical tweezer can simultaneously trap microparticles in the pre-focal zone along the beam axis, i.e. between the transducer surface and its geometric focus. As acoustical tweezers are fast becoming a key instrument in microparticle handling, the development of acoustic multitrapping concept may turn into a useful tool in engineering these devices.

قيم البحث

اقرأ أيضاً

98 - Michael Baudoin 2020
Acoustical tweezers open major prospects in microbiology for cells and microorganisms contactless manipulation, organization and mechanical properties testing since they are biocompatible, label-free and can exert forces several orders of magnitude l arger than their optical counterpart at equivalent wave power. Yet, these tremendous perspectives have so far been hindered by the absence of selectivity of existing acoustical tweezers -- i.e., the ability to select and move objects individually -- and/or their limited resolution restricting their use to large particle manipulation only. Here, we report precise selective contactless manipulation and positioning of human cells in a standard microscopy environment, without altering their viability. Trapping forces of up to $sim$ 200 pN are reported with less than 2 mW of driving power. The unprecedented selectivity, miniaturization and trapping force are achieved by combining holography with active materials and fabrication techniques derived from the semi-conductor industry to synthesize specific wavefields (called focused acoustical vortices) designed to produce stiff localized traps. We anticipate this work to be a starting point toward widespread applications of acoustical tweezers in fields as diverse as tissue engineering, cell mechano-transduction analysis, neural network study or mobile microorganisms imaging, for which precise manipulation and/or controlled application of stresses is mandatory.
78 - Michael Baudoin 2018
Acoustical tweezers based on focalized acoustical vortices hold the promise of precise contactless 3D manipulation of millimeter down to sub-micrometer particles, microorganisms and cells with unprecedented combined selectivity and trapping force. Ye t, the widespread dissemination of this technology has been hindered by severe limitations of current systems in terms of performance and/or miniaturization and integrability. In this paper, we unleash the potential of focalized acoustical vortices by developing the first flat, compact, single-electrodes focalized acoustical tweezers. These tweezers rely on holographic Archimedes-Fermat spiraling transducers obtained by folding a spherical acoustical vortex on a flat piezoelectric substrate. We demonstrate the ability of these tweezers to grab and displace micrometric objects in a standard microfluidic environment with unique selectivity. The simplicity of this system and its scalability to higher frequencies opens tremendous perspectives in microbiology, microrobotics and microscopy.
363 - Peiran Yin , Rui Li , Zizhe Wang 2019
Manipulating micro-scale object plays paramount roles in a wide range of fundamental researches and applications. At micro-scale, various methods have been developed in the past decades, including optical, electric, magnetic, aerodynamic and acoustic methods. However, these non-contact forces are susceptible to external disturbance, and so finding a way to make micro-scale object manipulation immune to external perturbations is challenging and remains elusive. Here we demonstrate a method based on new trapping mechanism to manipulate micro-scale object in a gas flow at ambient conditions. We first show that the micro-droplet is entrapped into a trapping ring constructed by a particular toroidal vortex. The vortex works as tweezers to control the position of the micro-droplet. We then show that the micro-droplet can be transported along the trapping ring. By virtue of the topological character of the gas flow, the transport path is able to bypass external strong perturbations automatically. We further demonstrate a topological transfer process of the micro-droplet between two hydrodynamic tweezers. Our method provides an integrated toolbox to manipulate a micro-scale object, with an intrinsic mechanism that protects the target object from external disturbances.
79 - S. B. Q. Tran 2012
This paper presents a microfluidic device that implements standing surface acoustic waves in order to handle single cells, droplets, and generally particles. The particles are moved in a very controlled manner by the two-dimensional drifting of a sta nding wave array, using a slight frequency modulation of two ultrasound emitters around their resonance. These acoustic tweezers allow any type of motion at velocities up to few 10mm/s, while the device transparency is adapted for optical studies. The possibility of automation provides a critical step in the development of lab-on-a-chip cell sorters and it should find applications in biology, chemistry, and engineering domains.
151 - M. Schindler , A. Ajdari 2007
We propose a simple model to analyze the traffic of droplets in microfluidic ``dual networks. Such functional networks which consist of two types of channels, namely those accessible or forbidden to droplets, often display a complex behavior characte ristic of dynamical systems. By focusing on three recently proposed configurations, we offer an explanation for their remarkable behavior. Additionally, the model allows us to predict the behavior in different parameter regimes. A verification will clarify fundamental issues, such as the network symmetry, the role of the driving conditions, and of the occurrence of reversible behavior. The model lends itself to a fast numerical implementation, thus can help designing devices, identifying parameter windows where the behavior is sufficiently robust for a devices to be practically useful, and exploring new functionalities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا