ﻻ يوجد ملخص باللغة العربية
Recently, within the framework of the Composite Operator Method, it has been proposed a three-pole solution for the two-dimensional Hubbard model [Eur. Phys. J. B 87, 45 (2014)], which is still considered one of the best candidate model to microscopically describe high-$T_{c}$ cuprate superconductors. The operatorial basis comprise the two Hubbard operators (complete fermionic local basis) and the electronic operator dressed by the nearest-neighbor spin fluctuations. The effectiveness of the approximate solution has been proved through a positive comparison with different numerical methods for various quantities. In this article, after recollecting the main analytical expressions defining the solution and the behavior of basic local quantities (double occupancy and chemical potential) and of the quasi-particle energy dispersions, we resolve and analyze the momentum components of relevant quantities: filling (i.e. the momentum distribution function), double occupancy and nearest-neighbor spin correlation function. The analysis is extended to COM(2p) solutions that will be used as primary reference. Thanks to this, the role played by the third field, with respect to the two Hubbard ones, in determining the behavior of many relevant quantities and in allowing the extremely good comparison with numerical results is better understood giving a guideline to further improve and, possibly, optimize the application of the COM to the Hubbard model.
We show that the numerically exact bold-line diagrammatic theory for the $2d$ Hubbard model exhibits a non-Fermi-liquid (NFL) strange metal state, which is connected to the SYK NFL in the strong-interaction limit. The solution for the doped system fe
We investigate the spin Seebeck coefficient $S_s$ in the square lattice Hubbard model at high temperatures of relevance to cold-atom measurements. We solve the model with the finite-temperature Lanczos and with the dynamical mean-field theory methods
Under the action of coherent periodic driving a generic quantum system will undergo Floquet heating and continously absorb energy until it reaches a featureless thermal state. The phase-space constraints induced by certain symmetries can, however, pr
We study the dynamical behavior of doped electronic systems subject to a global ramp of the repulsive Hubbard interaction. We start with formulating a real-time generalization of the fluctuation-exchange approximation. Implementing this numerically,
We calculate the Landau interaction function f(k,k) for the two-dimensional t-t Hubbard model on the square lattice using second and higher order perturbation theory. Within the Landau-Fermi liquid framework we discuss the behavior of spin and charge