ترغب بنشر مسار تعليمي؟ اضغط هنا

Millihertz quasi-periodic oscillations and broad iron line from LMC X-1

114   0   0.0 ( 0 )
 نشر من قبل Sanjay Jhingan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Md. Shah Alam




اسأل ChatGPT حول البحث

We study the temporal and energy spectral characteristics of the persistent black hole X-ray binary LMC X-1 using two XMM-Newton and a Suzaku observation. We report the discovery of low frequency (~ 26-29 mHz) quasi-periodic oscillations (QPOs). We also report the variablity of the broad iron K-alpha line studied earlier with Suzaku. The QPOs are found to be weak with fractional rms amplitude in the ~ 1-2 % range and quality factor Q~2-10 . They are accompanied by weak red noise or zero-centered Lorentzian components with rms variability at the ~ 1-3 % level. The energy spectra consists of three varying components - multicolour disk blackbody (kT_{in} ~ 0.7-0.9 keV), high energy power-law tail (Gamma ~ 2.4 - 3.3) and a broad iron line at 6.4-6.9 keV. The broad iron line, the QPO and the strong power-law component are not always present. The QPOs and the broad iron line appear to be clearly detected in the presence of a strong power-law component. The broad iron line is found to be weaker when the disk is likely truncated and absent when the power-law component almost vanished. These results suggest that the QPO and the broad iron line together can be used to probe the dynamics of the accretion disk and the corona.

قيم البحث

اقرأ أيضاً

228 - Andrea Sanna 2014
Both the broad iron (Fe) line and the frequency of the kilohertz quasi-periodic oscillations (kHz QPOs) in neutron star low-mass X-ray binaries (LMXBs) can potentially provide independent measures of the inner radius of the accretion disc. We use XMM -Newton and simultaneous Rossi X-ray Timing Explorer observations of the LMXB 4U 1636-53 to test this hypothesis. We study the properties of the Fe-K emission line as a function of the spectral state of the source and the frequency of the kHz QPOs. We find that the inner radius of the accretion disc deduced from the frequency of the upper kHz QPO varies as a function of the position of the source in the colour-colour diagram, in accordance with previous work and with the standard scenario of accretion disc geometry. On the contrary, the inner disc radius deduced from the profile of the Fe line is not correlated with the spectral state of the source. The values of the inner radius inferred from kHz QPOs and Fe lines, in four observations, do not lead to a consistent value of the neutron star mass, regardless of the model used to fit the Fe line. Our results suggest that either the kHz QPO or the standard relativistic Fe line interpretation does not apply for this system. Furthermore, the simultaneous detection of kHz QPOs and broad Fe lines is difficult to reconcile with models in which the broadening of the Fe line is due to the reprocessing of photons in an outflowing wind.
72 - M. Linares 2011
We present a comprehensive study of the thermonuclear bursts and millihertz quasi-periodic oscillations (mHz QPOs) from the neutron star (NS) transient and 11 Hz X-ray pulsar IGR J17480-2446, located in the globular cluster Terzan 5. The increase in burst rate that we found during its 2010 outburst, when persistent luminosity rose from 0.1 to 0.5 times the Eddington limit, is in qualitative agreement with thermonuclear burning theory yet opposite to all previous observations of thermonuclear bursts. Thermonuclear bursts gradually evolved into a mHz QPO when the accretion rate increased, and vice versa. The mHz QPOs from IGR J17480-2446 resemble those previously observed in other accreting NSs, yet they feature lower frequencies (by a factor ~3) and occur when the persistent luminosity is higher (by a factor 4-25). We find four distinct bursting regimes and a steep (close to inverse cubic) decrease of the burst recurrence time with increasing persistent luminosity. We compare these findings to nuclear burning models and find evidence for a transition between the pure helium and mixed hydrogen/helium ignition regimes when the persistent luminosity was about 0.3 times the Eddington limit. We also point out important discrepancies between the observed bursts and theory, which predicts brighter and less frequent bursts, and suggest that an additional source of heat in the NS envelope is required to reconcile the observed and expected burst properties. We discuss the impact of NS magnetic field and spin on the expected nuclear burning regimes, in the context of this particular pulsar.
We studied the harmonics of the millihertz quasi-periodic oscillations (mHz QPOs) in the neutron-star low-mass X-ray binary 4U 1636-53 using the Rossi X-ray Timing Explorer observations. We detected the harmonics of the mHz QPOs in 73 data intervals, with most of them in the transitional spectra state. We found that the ratio between the rms amplitude of the harmonic and that of the fundamental remains constant in a wide range of the fundamental frequency. More importantly, we studied, for the first time, the rms amplitude of the harmonics vs. energy in 4U 1636-53 in the 2-5 keV range. We found that the rms amplitude of both the harmonic and the fundamental shows a decreasing trend as the energy increases, which is different from the behaviors reported in QPOs in certain black hole systems. Furthermore, our results suggest that not all observations with mHz QPOs have the harmonic component, although the reason behind this is still unclear.
We study the Rossby wave instability model of high-frequency quasi-periodic oscillations (QPO) of microquasars. We show ray-traced light curves of QPO within this model and discuss perspectives of distinguishing alternative QPO models with the future Large Observatory For X-ray Timing (LOFT) observations.
108 - H. Stiele , W. Yu , A. K. H. Kong 2016
Based on previous studies of quasi-periodic oscillations in neutron star LMXBs, mHz quasi-periodic oscillations (QPO) are believed to be related to `marginally stable burning on the neutron star (NS) surface. Our study of phase resolved energy spectr a of these oscillations in 4U 1636-53 shows that the oscillations are not caused by variations in the blackbody temperature of the neutron star, but reveals a correlation between the change of the count rate during the mHz QPO pulse and the spatial extend of a region emitting blackbody emission. The maximum size of the emission area $R^2_{mathrm{BB}}=216.7^{+93.2}_{-86.4}$km$^2$, provides the direct evidence that the oscillations originate from a variable surface area constrained on the NS and are therefore not related to instabilities in the accretion disk. The obtained lower limit on the size of the neutron star (11.0 km) rules out equations of state that prefer small NS radii. Observations of mHz QPOs in NS LMXBs with NICER and eXTP will reduce the statistical uncertainty in the lower limit on the NS radius, which together with better estimates of the hardening factor and distance, will allow improving discrimination between different equations of state and compact star models. Furthermore, future missions will allow us to measure the peak blackbody emission area for a single mHz QPO pulse, which will push the lower limit to larger radii.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا