ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for Chemical Signatures of Multiple Stellar Populations in the Old, Massive Open Cluster NGC 6791

126   0   0.0 ( 0 )
 نشر من قبل Angela Bragaglia
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galactic open and globular clusters (OCs, GCs) appear to inhabit separate regions of the age-mass plane. However, the transition between them is not easily defined because there is some overlap between high-mass, old OCs and low-mass, young GCs. We are exploring the possibility of a clear-cut separation between OCs and GCs using an abundance feature that has been found so far only in GCs: (anti)correlations between light elements. Among the coupled abundance trends, the Na-O anticorrelation is the most widely studied. These anticorrelations are the signature of self-enrichment, i.e., of a formation mechanism that implies multiple generations of stars. Here we concentrate on the old, massive, metal-rich OC NGC 6791. We analyzed archival Keck/HIRES spectra of 15 NGC 6791 main sequence turn-off and evolved stars, concentrating on the derivation of C, N, O, and Na abundances. We also used WIYN/Hydra spectra of 21 evolved stars (one is in common). Given the spectral complexity of the very metal-rich NGC 6791 stars, we employed spectrum synthesis to measure most of the abundances. We confirmed the cluster super-solar metallicity and abundances of Ca and Ni that have been derived in past studies. More importantly, we did not detect any significant star-to-star abundance dispersion in C, N, O and Na. Based on the absence of a clear Na-O anticorrelation, NGC 6791 can still be considered a true OC, hosting a single generation of stars, and not a low-mass GC.



قيم البحث

اقرأ أيضاً

116 - A. Bragaglia 2012
The most massive star clusters include several generations of stars with a different chemical composition (mainly revealed by an Na-O anti-correlation) while low-mass star clusters appear to be chemically homogeneous. We are investigating the chemica l composition of several clusters with masses of a few 10^4 Msun to establish the lower mass limit for the multiple stellar population phenomenon. Using FLAMES@VLT spectra we determine abundances of Fe, O, Na, and several other elements (alpha, Fe-peak, and neutron-capture elements) in the old open cluster Berkeley 39. This is a massive open cluster: M~10^4 Msun, approximately at the border between small globular clusters and large open clusters. Our sample size of about 30 stars is one of the largest studied for abundances in any open cluster to date, and will be useful to determine improved cluster parameters, such as age, distance, and reddening when coupled with precise, well-calibrated photometry. We find that Berkeley 39 is slightly metal-poor, <[Fe/H]>=-0.20, in agreement with previous studies of this cluster. More importantly, we do not detect any star-to-star variation in the abundances of Fe, O, and Na within quite stringent upper limits. The r.m.s. scatter is 0.04, 0.10, and 0.05 dex for Fe, O, and Na, respectively. This small spread can be entirely explained by the noise in the spectra and by uncertainties in the atmospheric parameters. We conclude that Berkeley 39 is a single-population cluster.
307 - Bruce A. Twarog 2010
NGC 6791 is an old, metal-rich star cluster normally considered to be a disk open cluster. Its red giant branch is broad in color yet, to date, there is no evidence for a metallicity spread among its stars. The turnoff region of the main sequence is also wider than expected from broad-band photometric errors. Analysis of the color-magnitude diagram reveals a color gradient between the core of the cluster and its periphery; we evaluate the potential explanations for this trend. While binarity and photometric errors appear unlikely, reddening variations across the face of the cluster cannot be excluded. We argue that a viable alternative explanation for this color trend is an age spread resulting from a protracted formation time for the cluster; the stars of the inner region of NGC 6791 appear to be older by ~1 Gyr on average than those of the outer region.
200 - Raffaele Gratton 2006
We have observed four red clump stars in the very old and metal-rich open cluster NGC 6791 to derive its metallicity, using the high resolution spectrograph SARG mounted on the TNG. Using a spectrum synthesis technique we obtain an average value of [ Fe/H] = +0.47 (+/- 0.04, rms=0.08) dex. Our method was tested on mu Leo, a well studied metal-rich field giant. We also derive average oxygen and carbon abundances for NGC 6791 from synthesis of [O I] at 6300 A and C_2 at 5086 A, finding [O/Fe] =~ -0.3 and [C/Fe] =~ -0.2.
125 - E. Dalessandro 2015
We present the first evidence of clear signatures of tidal distortions in the density distribution of the fascinating open cluster NGC 6791. We used deep and wide-field data obtained with the Canada-France-Hawaii-Telescope covering a 2x2 square degre es area around the cluster. The two-dimensional density map obtained with the optimal matched filter technique shows a clear elongation and an irregular distribution starting from ~300 from the cluster center. At larger distances, two tails extending in opposite directions beyond the tidal radius are also visible. These features are aligned to both the absolute proper motion and to the Galactic center directions. Moreover, other overdensities appear to be stretched in a direction perpendicular to the Galactic plane. Accordingly to the behaviour observed in the density map, we find that both the surface brightness and the star count density profiles reveal a departure from a King model starting from ~600 from the center. These observational evidence suggest that NGC 6791 is currently experiencing mass loss likely due to gravitational shocking and interactions with the tidal field. We use this evidence to argue that NGC 6791 should have lost a significant fraction of its original mass. A larger initial mass would in fact explain why the cluster survived so long. Using available recipes based on analytic studies and N-body simulations, we derived the expected mass loss due to stellar evolution and tidal interactions and estimated the initial cluster mass to be M_ini=(1.5-4) x 10^5 M_sun.
NGC 6791 is a unique stellar cluster, key to our understanding of both the multiple stellar population phenomenon and the evolution and assembly of the Galaxy. However, despite many investigations, its nature is still very controversial. Geisler et a l. (2012) found evidence suggesting it was the first open cluster to possess multiple populations but several subsequent studies did not corroborate this. It has also been considered a member of the thin or thick disk or even the bulge, and both as an open or globular cluster or even the remnant of a dwarf galaxy. Here, we present and discuss detailed abundances derived from high resolution spectra obtained with UVES at VLT and HIRES at Keck of 17 evolved stars of this cluster. We obtained a mean [Fe/H]=+0.313+-0.005, in good agreement with recent estimates, and with no indication of star-to-star metallicity variation, as expected. We also did not find any variation in Na, in spite of having selected the very same stars as in Geisler et al. (2012), where a Na variation was claimed. This points to the presence of probable systematics in the lower resolution spectra of this very high metallicity cluster analysed in that work. In fact, we find no evidence for an intrinsic spread in any element, corroborating recent independent APOGEE data. The derived abundances indicate that NGC 6791 very likely formed in the Galactic Bulge and that the proposed association with the Thick Disk is unlikely, despite its present Galactic location. We confirm the most recent hypothesis suggesting that the cluster could have formed in the Bulge and radially migrated to its current location, which appears the best explanation for this intriguing object.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا