ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling properties of field-induced superdiffusion in Continous Time Random Walks

253   0   0.0 ( 0 )
 نشر من قبل Alessandro Sarracino
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a broad class of Continuous Time Random Walks with large fluctuations effects in space and time distributions: a random walk with trapping, describing subdiffusion in disordered and glassy materials, and a Levy walk process, often used to model superdiffusive effects in inhomogeneous materials. We derive the scaling form of the probability distributions and the asymptotic properties of all its moments in the presence of a field by two powerful techniques, based on matching conditions and on the estimate of the contribution of rare events to power-law tails in a field.



قيم البحث

اقرأ أيضاً

We study how the Hurst exponent $alpha$ depends on the fraction $f$ of the total time $t$ remembered by non-Markovian random walkers that recall only the distant past. We find that otherwise nonpersistent random walkers switch to persistent behavior when inflicted with significant memory loss. Such memory losses induce the probability density function of the walkers position to undergo a transition from Gaussian to non-Gaussian. We interpret these findings of persistence in terms of a breakdown of self-regulation mechanisms and discuss their possible relevance to some of the burdensome behavioral and psychological symptoms of Alzheimers disease and other dementias.
218 - N. Lemke , I. A. Campbell 2011
Diffusion on a diluted hypercube has been proposed as a model for glassy relaxation and is an example of the more general class of stochastic processes on graphs. In this article we determine numerically through large scale simulations the eigenvalue spectra for this stochastic process and calculate explicitly the time evolution for the autocorrelation function and for the return probability, all at criticality, with hypercube dimensions $N$ up to N=28. We show that at long times both relaxation functions can be described by stretched exponentials with exponent 1/3 and a characteristic relaxation time which grows exponentially with dimension $N$. The numerical eigenvalue spectra are consistent with analytic predictions for a generic sparse network model.
We introduce a heterogeneous continuous time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environmen ts, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatio-temporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
Using the replica method, we develop an analytical approach to compute the characteristic function for the probability $mathcal{P}_N(K,lambda)$ that a large $N times N$ adjacency matrix of sparse random graphs has $K$ eigenvalues below a threshold $l ambda$. The method allows to determine, in principle, all moments of $mathcal{P}_N(K,lambda)$, from which the typical sample to sample fluctuations can be fully characterized. For random graph models with localized eigenvectors, we show that the index variance scales linearly with $N gg 1$ for $|lambda| > 0$, with a model-dependent prefactor that can be exactly calculated. Explicit results are discussed for Erdos-Renyi and regular random graphs, both exhibiting a prefactor with a non-monotonic behavior as a function of $lambda$. These results contrast with rotationally invariant random matrices, where the index variance scales only as $ln N$, with an universal prefactor that is independent of $lambda$. Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support the Gaussian nature of the index fluctuations.
Maximum entropy (maxEnt) inference of state probabilities using state-dependent constraints is popular in the study of complex systems. In stochastic dynamical systems, the effect of state space topology and path-dependent constraints on the inferred state probabilities is unknown. To that end, we derive the transition probabilities and the stationary distribution of a maximum {it path} entropy Markov process subject to state- and path-dependent constraints. The stationary distribution reflects a competition between path multiplicity and imposed constraints and is significantly different from the Boltzmann distribution. We illustrate our results with a particle diffusing on an energy landscape. Connections with the path integral approach to diffusion are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا