ﻻ يوجد ملخص باللغة العربية
Given a finite connected graph $G$, place a bin at each vertex. Two bins are called a pair if they share an edge of $G$. At discrete times, a ball is added to each pair of bins. In a pair of bins, one of the bins gets the ball with probability proportional to its current number of balls. Previous works proved that when $G$ is not balanced bipartite, the proportion of balls in the bins converges to a point $w(G)$ almost surely. We prove almost sure convergence for balanced bipartite graphs: the possible limit is either a single point $w(G)$ or a closed interval $mathcal J(G)$.
In this paper we are concerned with a generalized $N$-urn Ehrenfest model, where balls keeps independent random walks between $N$ boxes uniformly laid on $[0, 1]$. After a proper scaling of the transition rates function of the aforesaid random walk,
In this paper, we consider a multi-drawing urn model with random addition. At each discrete time step, we draw a sample of m balls. According to the composition of the drawn colors, we return the balls together with a random number of balls depending
Knowledge graphs have been demonstrated to be an effective tool for numerous intelligent applications. However, a large amount of valuable knowledge still exists implicitly in the knowledge graphs. To enrich the existing knowledge graphs, recent year
This paper is a further investigation of the generalized $N$-urn Ehrenfest model introduced in cite{Xue2020}. A moderate deviation principle from the hydrodynamic limit of the model is derived. The proof of this main result follows a routine procedur
Scale-free percolation is a spatial random graph model with vertex set $mathbb{Z}^d$. Vertices $x$ and $y$ are connected with probability depending on i.i.d. vertex weights and the Euclidean distance. Depending on the various parameters involved, we