ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar populations from spectroscopy of a large sample of quiescent galaxies at z > 1: Measuring the contribution of progenitor bias to early size growth

79   0   0.0 ( 0 )
 نشر من قبل Sirio Belli
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sirio Belli




اسأل ChatGPT حول البحث

We analyze the stellar populations of a sample of 62 massive (log Mstar/Msun > 10.7) galaxies in the redshift range 1 < z < 1.6, with the main goal of investigating the role of recent quenching in the size growth of quiescent galaxies. We demonstrate that our sample is not biased toward bright, compact, or young galaxies, and thus is representative of the overall quiescent population. Our high signal-to-noise ratio Keck LRIS spectra probe the rest-frame Balmer break region which contains important absorption line diagnostics of recent star formation activity. We obtain improved measures of the various stellar population parameters, including the star-formation timescale tau, age and dust extinction, by fitting templates jointly to both our spectroscopic and broad-band photometric data. We identify which quiescent galaxies were recently quenched and backtrack their individual evolving trajectories on the UVJ color-color plane finding evidence for two distinct quenching routes. By using sizes measured in the previous paper of this series, we confirm that the largest galaxies are indeed among the youngest at a given redshift. This is consistent with some contribution to the apparent growth from recent arrivals, an effect often called progenitor bias. However, we calculate that recently-quenched objects can only be responsible for about half the increase in average size of quiescent galaxies over a 1.5 Gyr period, corresponding to the redshift interval 1.25 < z < 2. The remainder of the observed size evolution arises from a genuine growth of long-standing quiescent galaxies.

قيم البحث

اقرأ أيضاً

We perform a comprehensive study of the stellar population properties of quiescent galaxies as a function of size and stellar mass to constrain the physical mechanism governing the stellar mass assembly and the likely evolutive scenarios that explain their growth in size. After selecting all the quiescent galaxies from the ALHAMBRA survey by the dust-corrected stellar mass$-$colour diagram, we built a shared sample of $sim850$ quiescent galaxies with reliable sizes from the HST. The stellar population properties were retrieved using the SED-fitting code MUFFIT with various sets of composite stellar population models. Age, formation epoch, metallicity, and extinction were studied on the stellar mass$-$size plane as function of size through a Monte Carlo approach. This accounted for uncertainties and degeneracy effects amongst stellar population properties. The stellar population properties of quiescent galaxies and their stellar mass and size since $zsim1$ are correlated. At fixed stellar mass, the more compact the quiescent galaxy, the older and richer in metals it is ($1$Gyr and $0.1$dex, respectively). In addition, more compact galaxies may present slight lower extinctions than their more extended counterparts at the same stellar mass ($<0.1$ mag). By means of studying constant regions of stellar population properties across the stellar mass$-$size plane, we obtained empirical relations to constrain the physical mechanism that governs the stellar mass assembly of the form $M_star propto r_mathrm{c}^alpha$, where $alpha$ amounts to $0.50-0.55 pm 0.09$. There are indications that support the idea that the velocity dispersion is tightly correlated with the stellar content of galaxies. The mechanisms driving the evolution of stellar populations can therefore be partly linked to the dynamical properties of galaxies, along with their gravitational potential.
87 - Sirio Belli 2013
We present Keck LRIS spectroscopy for a sample of 103 massive galaxies with redshifts 0.9 < z < 1.6. Of these, 56 are quiescent with high signal-to-noise absorption line spectra, enabling us to determine robust stellar velocity dispersions for the la rgest sample yet available beyond a redshift of 1. Together with effective radii measured from deep Hubble Space Telescope images, we calculate dynamical masses and address key questions relating to the puzzling size growth of quiescent galaxies over 0 < z < 2. We examine the relationship between stellar and dynamical masses at high redshift, finding that it closely follows that determined locally. We also confirm the utility of the locally-established empirical calibration which enables high-redshift velocity dispersions to be estimated photometrically, and we determine its accuracy to be 35%. To address recent suggestions that progenitor bias - the continued arrival of recently-quenched larger galaxies - can largely explain the size evolution of quiescent galaxies, we examine the growth at fixed velocity dispersion assuming this quantity is largely unaffected by the merger history. We demonstrate that significant size and mass growth have clearly occurred in individual systems. Parameterizing the relation between mass and size growth over 0 < z < 1.6 as R propto M^alpha, we find alpha = 1.6 +- 0.3, in agreement with theoretical expectations from simulations of minor mergers. Relaxing the assumption that the velocity dispersion is unchanging, we examine growth assuming a constant ranking in galaxy velocity dispersion. This approach is applicable only to the large-dispersion tail of the distribution, but yields a consistent growth rate of alpha = 1.4 +- 0.2. Both methods confirm that progenitor bias alone is insufficient to explain our new observations and that quiescent galaxies have grown in both size and stellar mass over 0 < z < 1.6.
We present a spectroscopic analysis based on measurements of two mainly age-dependent spectrophotometric indices in the 4000A rest frame region, i.e. H+K(CaII) and Delta4000, for a sample of 15 early-type galaxies (ETGs) at 0.7 < z_{spec} < 1.1, morp hologically selected in the GOODS-South field. Ages derived from the two different indices by means of the comparison with stellar population synthesis models, are not consistent with each other for at least nine galaxies (60 per cent of the sample), while for the remaining six galaxies, the ages derived from their global spectral energy distribution (SED) fitting are not consistent with those derived from the two indices. We then hypothesized that the stellar content of many galaxies is made of two stellar components with different ages. The double-component analysis, performed by taking into account both the index values and the observed SED, fully explains the observational data and improves the results of the standard one-component SED fitting in 9 out of the 15 objects, i.e. those for which the two indices point towards two different ages. In all of them, the bulk of the mass belongs to rather evolved stars, while a small mass fraction is many Gyr younger. In some cases, thanks to the sensitivity of the H+K(CaII) index, we find that the minor younger component reveals signs of recent star formation. The distribution of the ages of the younger stellar components appears uniformly in time and this suggests that small amounts of star formation could be common during the evolution of high-z ETGs. We argue the possibility that these new star formation episodes could be frequently triggered by internal causes due to the presence of small gas reservoir.
Selecting centrally quiescent galaxies from the Sloan Digital Sky Survey (SDSS) to create high signal-to-noise (>100) stacked spectra with minimal emission line contamination, we accurately and precisely model the central stellar populations of barre d and unbarred quiescent disk galaxies. By splitting our sample by redshift, we can use the fixed size of the SDSS fiber to model the stellar populations at different radii within galaxies. At 0.02<z<0.04, the SDSS fiber radius corresponds to ~1 kpc, which is the typical half-light radii of both classical bulges and disky pseudobulges. Assuming that the SDSS fiber primarily covers the bulges at these redshifts, our analysis shows that there are no significant differences in the stellar populations, i.e., stellar age, [Fe/H], [Mg/Fe], and [N/Fe], of the bulges of barred vs. unbarred quiescent disk galaxies. Modeling the stellar populations at different redshift intervals from z=0.020 to z=0.085 at fixed stellar masses produces an estimate of the stellar population gradients out to about half the typical effective radius of our sample, assuming null evolution over this ~1 Gyr epoch. We find that there are no noticeable differences in the slopes of the azimuthally averaged gradients of barred vs. unbarred quiescent disk galaxies. These results suggest that bars are not a strong influence on the chemical evolution of quiescent disk galaxies.
In this paper we present a simple color-magnitude selection and obtain a large sample of 33,893 massive quiescent galaxies at intermediate redshifts (1<z<1.5). We choose the longest wavelength available in the Hyper-Supreme-Cam (HSC) deep survey, the Y band and i-Y color, to select the 4000A Balmer jump in passive galaxies to the highest redshift possible within the survey. With the rich multi-wavelength data in the HSC deep fields, we then confirm that the selected galaxies are in the targeted redshift range of 1<z<1.5, lie in the passive region of the UVJ diagram, and have high stellar masses at log(M*/M_sun)>10.5, with a median of log(M*/M_sun)=11.0. A small fraction of our galaxies is also covered by the HST CANDELS. Morphological analysis in the observed H band shows that the majority of this subsample are early-type galaxies. As massive early-type galaxies trace the high density regions in the large scale structure in the universe, our study provides a quick and simple way to obtain a statistical significant sample of massive galaxies in a relative narrow redshift range. Our sample is 7-20 times larger at the massive end (log(M*/M_sun)>10.5) than any existing samples obtained in previous surveys. This is a pioneer study, and the technique introduced here can be applied to future wide-field survey to study large scale structure, and to identify high density region and clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا