ﻻ يوجد ملخص باللغة العربية
The process that quenched star formation in galaxies at intermediate and high redshift is still the subject of considerable debate. One way to investigate this puzzling issue is to study the number density of quiescent galaxies at z~2, and its dependence on mass. Here we present the results of a new study based on very deep Ks-band imaging (with the HAWK-I instrument on the VLT) of two HST CANDELS fields (the UKIDSS Ultra-deep survey (UDS) field and GOODS-South). The new HAWK-I data (taken as part of the HUGS VLT Large Program) reach detection limits of Ks>26 (AB mag). We select a sample of passively-evolving galaxies in the redshift range 1.4<z<2.5. Thanks to the depth and large area coverage of our imaging, we have been able to extend the selection of quiescent galaxies a magnitude fainter than previous analyses. Through extensive simulations we demonstrate, for the first time, that the observed turn-over in the number of quiescent galaxies at K>22 is real. This has enabled us to establish unambiguously that the number counts of quiescent galaxies at z~2 flatten and slightly decline at magnitudes fainter than Ks~22(AB mag.). We show that this trend corresponds to a stellar mass threshold $M_*10^{10.8},{rm M_{odot}}$ below which the mechanism that halts the star formation in high-redshift galaxies seems to be inefficient. Finally we compare the observed pBzK number counts with those of quiescent galaxies extracted from four different semi-analytic models. We find that none of the models provides a statistically acceptable description of the number density of quiescent galaxies at these redshifts. We conclude that the mass function of quiescent galaxies as a function of redshift continues to present a key and demanding challenge for proposed models of galaxy formation and evolution.
We use the UKIDSS Ultra-deep survey (UDS), currently the deepest panoramic near infra-red survey, together with deep Subaru optical imaging to measure the clustering, number counts and luminosity function of galaxies at $zsim 2$ selected using the Bz
We report the first sub-kiloparsec spatial resolution measurements of strongly inverted gas-phase metallicity gradients in two dwarf galaxies at $z$$sim$2. The galaxies have stellar masses $sim$$10^9M_odot$, specific star-formation rate $sim$20 Gyr$^
We study the morphological and structural properties of the host galaxies associated with 57 optically-selected luminous type 2 AGN at $zsim$0.3-0.4: 16 high-luminosity Seyfert 2 (HLSy2, 8.0$le$log($L_{rm [OIII]}/L_{odot})<$8.3) and 41 obscured quasa
Quenched galaxies at z>2 are nearly all very compact relative to z~0, suggesting a physical connection between high stellar density and efficient, rapid cessation of star-formation. We present restframe UV spectra of Lyman-break galaxies (LBGs) at z~
In this work, we use measurements of galaxy stellar mass and two-point angular correlation functions to constrain the stellar-to-halo mass ratios (SHMRs) of passive and p galaxies at $zsim2-3$, as identified in the emph{Spitzer} Matching Survey of t