ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulence in simulated HII regions

143   0   0.0 ( 0 )
 نشر من قبل Jane Arthur
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the scale dependence of fluctuations inside a realistic model of an evolving turbulent HII region and to what extent these may be studied observationally. We find that the multiple scales of energy injection from champagne flows and the photoionization of clumps and filaments leads to a flatter spectrum of fluctuations than would be expected from top-down turbulence driven at the largest scales. The traditional structure function approach to the observational study of velocity fluctuations is shown to be incapable of reliably determining the velocity power spectrum of our simulation. We find that a more promising approach is the Velocity Channel Analysis technique of Lazarian & Pogosyan (2000), which, despite being intrinsically limited by thermal broadening, can successfully recover the logarithmic slope of the velocity power spectrum to a precision of +-0.1 from high resolution optical emission line spectroscopy.



قيم البحث

اقرأ أيضاً

Ultracompact and hypercompact HII regions appear when a star with a mass larger than about 15 solar masses starts to ionize its own environment. Recent observations of time variability in these objects are one of the pieces of evidence that suggest t hat at least some of them harbor stars that are still accreting from an infalling neutral accretion flow that becomes ionized in its innermost part. We present an analysis of the properties of the HII regions formed in the 3D radiation-hydrodynamic simulations presented by Peters et al. as a function of time. Flickering of the HII regions is a natural outcome of this model. The radio-continuum fluxes of the simulated HII regions, as well as their flux and size variations are in agreement with the available observations. From the simulations, we estimate that a small but non-negligible fraction (~ 10 %) of observed HII regions should have detectable flux variations (larger than 10 %) on timescales of ~ 10 years, with positive variations being more likely to happen than negative variations. A novel result of these simulations is that negative flux changes do happen, in contrast to the simple expectation of ever growing HII regions. We also explore the temporal correlations between properties that are directly observed (flux and size) and other quantities like density and ionization rates.
397 - Jorge Melnick 2019
The tight correlation between turbulence and luminosity in Giant HII Regions is not well understood. While the luminosity is due to the UV radiation from the massive stars in the ionizing clusters, it is not clear what powers the turbulence. Observat ions of the two prototypical Giant HII Regions in the local Universe, 30 Doradus and NGC604, show that part of the kinetic energy of the nebular gas comes from the combined stellar winds of the most massive stars - the cluster winds, but not all. We present a study of the kinematics of 30 Doradus based on archival VLT FLAMES/GIRAFFE data and new high resolution observations with HARPS. We find that the nebular structure and kinematics are shaped by a hot cluster wind and not by the stellar winds of individual stars. The cluster wind powers most of the turbulence of the nebular gas, with a small but significant contribution from the combined gravitational potential of stars and gas. We estimate the total mass of 30 Doradus and we argue that the region does not contain significant amounts of neutral (HI) gas, and that the giant molecular cloud 30Dor-10 that is close to the center of the nebula in projection is in fact an inflating cloud tens of parsecs away from R136, the core of the ionizing cluster. We rule out a Kolmogorov-like turbulent kinetic energy cascade as the source of supersonic turbulence in Giant HII Regions.
We investigate the turbulence driving mode of ionizing radiation from massive stars on the surrounding interstellar medium (ISM). We run hydrodynamical simulations of a turbulent cloud impinged by a plane-parallel ionization front. We find that the i onizing radiation forms pillars of neutral gas reminiscent of those seen in observations. We quantify the driving mode of the turbulence in the neutral gas by calculating the driving parameter $b$, which is characterised by the relation $sigma_s^2 = ln({1+b^2mathcal{M}^2})$ between the variance of the logarithmic density contrast $sigma_s^2$ (where $s = ln({rho/rho_0})$ with the gas density $rho$ and its average $rho_0$), and the turbulent Mach number $mathcal{M}$. Previous works have shown that $bsim1/3$ indicates solenoidal (divergence-free) driving and $bsim1$ indicates compressive (curl-free) driving, with $bsim1$ producing up to ten times higher star formation rates than $bsim1/3$. The time variation of $b$ in our study allows us to infer that ionizing radiation is inherently a compressive turbulence driving source, with a time-averaged $bsim 0.76 pm 0.08$. We also investigate the value of $b$ of the pillars, where star formation is expected to occur, and find that the pillars are characterised by a natural mixture of both solenoidal and compressive turbulent modes ($bsim0.4$) when they form, and later evolve into a more compressive turbulent state with $bsim0.5$--$0.6$. A virial parameter analysis of the pillar regions supports this conclusion. This indicates that ionizing radiation from massive stars may be able to trigger star formation by producing predominately compressive turbulent gas in the pillars.
Context. The derived physical parameters for young HII regions are normally determined assuming the emission region to be optically thin. However, this assumption is unlikely to hold for young HII regions such as hyper-compact HII(HCHII) and ultra-co mpact HII(UCHII) regions and leads to the underestimation of their properties. This can be overcome by fitting the SEDs over a wide range of radio frequencies. Aims. The two primary goals of this study are (1) to determine the physical properties of young HII regions from radio SEDs in the search for potential HCHII regions, and (2) to use these physical properties to investigate their evolution. Method. We used the Karl G. Jansky Very Large Array (VLA) to observe the X-band and K-band with angular resolutions of ~1.7 and ~0.7, respectively, toward 114 HII regions with rising-spectra between 1-5 GHz. We complement our observations with VLA archival data and construct SEDs in the range of 1-26 GHz and model them assuming an ionization-bounded HII region with uniform density. Results. Our sample has a mean electron density of ne=1.6E4cm^{-3}, diameter diam=0.14pc, and emission measure EM = 1.9E7pc*cm^{-6}. We identify 16 HCHII region candidates and 8 intermediate objects between the classes of HCHII and UCHII regions. The ne, diam, and EM change as expected, but the Lyman continuum flux is relatively constant over time. We find that about 67% of Lyman-continuum photons are absorbed by dust within these HII regions and the dust absorption fraction tends to be more significant for more compact and younger HII regions. Conclusion. Young HII regions are commonly located in dusty clumps; HCHII regions and intermediate objects are often associated with various masers, outflows, broad radio recombination lines, and extended green objects, and the accretion at the two stages tends to be quickly reduced or halted.
The conversion of the IR emission into star formation rate can be strongly dependent on the physical properties of the dust, which are affected by the environmental conditions where the dust is embedded. We study here the dust properties of a set of HII regions in the Local Group Galaxy M33 presenting different spatial configurations between the stars, gas and dust to understand the dust evolution under different environments. We model the SED of each region using the DustEM tool and obtain the mass relative to hydrogen for Very Small Grains (YVSG), Polycyclic Aromatic Hydrocarbons (YPAH) and Big Grains (YBG). The relative mass of the VSGs (YVSG/YTOT) is a factor of 1.7 higher for HII regions classified as filled and mixed than for regions presenting a shell structure. The enhancement of VSGs within NGC 604 and NGC 595 is correlated to expansive gas structures with velocities greater than 50 km/s. The gas-to-dust ratio derived for the HII regions in our sample exhibits two regimes related to the HI-H2 transition of the ISM. Regions corresponding to the HI diffuse regime present a gas-to-dust ratio compatible with the expected value if we assume that the gas-to-dust ratio scales linearly with metallicity, while regions corresponding to a H2 molecular phase present a flatter dust-gas surface density distribution. The fraction of VSGs can be affected by the conditions of the interstellar environment: strong shocks of 50-90 km/s existing in the interior of the most luminous HII regions can lead to fragmentation of BGs into smaller ones, while the more evolved shell and clear shell objects provide a more quiescent environment where reformation of dust BG grains might occur. The gas-to-dust variations found in this analysis might imply that grain coagulation and/or gas-phase metals incorporation to the dust mass is occurring in the interior of the HII regions in M33.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا