ترغب بنشر مسار تعليمي؟ اضغط هنا

Majorana dark matter in a classically scale invariant model

58   0   0.0 ( 0 )
 نشر من قبل Sanjin Beni\\'c
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze a classically scale invariant extension of the Standard Model with dark gauge $U(1)_X$ broken by doubly charge scalar $Phi$ leaving a remnant $Z_2$ symmetry. Dark fermions are introduced as dark matter candidates and for anomaly reasons we introduce two chiral fermions. Due to classical scale invariance, bare mass term that would mix these two states is absent and they end up as stable Majorana fermions $N_1$ and $N_2$. We calculate cross sections for $N_aN_a to phiphi$, $N_aN_a to X^mu phi$ and $N_2N_2 to N_1N_1$ annihilation channels. We put constraints to the model from the Higgs searches at the LHC, dark matter relic abundance and dark matter direct detection limits by LUX. The dark gauge boson plays a crucial role in the Coleman-Weinberg mechanism and has to be heavier then 680 GeV. The viable mass region for dark matter is from 470 GeV up to a few TeV. In the case when two Majorana fermions have different masses, two dark matter signals at direct detection experiments could provide a distinctive signature of this model.

قيم البحث

اقرأ أيضاً

We consider a scale invariant extension of the standard model (SM) with a combined breaking of conformal and electroweak symmetry in a strongly interacting hidden $SU(n_c)$ gauge sector with $n_f$ vector-like hidden fermions. The (pseudo) Nambu-Golds tone bosons that arise due to dynamical chiral symmetry breaking are dark matter (DM) candidates. We focus on $n_f=n_c=3$, where $SU(3)$ is the largest symmetry group of hidden flavor which can be explicitly broken into either $U(1) times U(1)$ or $SU(2)times U(1)$. We study DM properties and discuss consistent parameter space for each case. Because of different mechanisms of DM annihilation the consistent parameter space in the case of $SU(2)times U(1)$ is significantly different from that of $SU(3)$ if the hidden fermions have a SM $U(1)_Y$ charge of $O(1)$.
We introduce a minimal and yet comprehensive framework with $CP$- and classical scale-symmetries, in order to simultaneously address the hierarchy problem, neutrino masses, dark matter, and inflation. One complex gauge singlet scalar and three flavor s of the right-handed Majorana neutrinos are added to the standard model content, facilitating the see-saw mechanism, among others. An adimensional theory of gravity (Agravity) is employed, allowing for the trans-Planckian field excursions. The weak and Planck scales are induced by the Higgs portal and the scalar non-minimal couplings, respectively, once a Coleman-Weinberg dynamically-generated vacuum expectation value for the singlet scalar is obtained. All scales are free from any mutual quadratic destabilization. The $CP$-symmetry prevents a decay of the pseudoscalar singlet, rendering it a suitable WIMPzilla dark matter candidate with the correct observational relic abundance. Identifying the pseudo-Nambu-Goldstone boson of the (approximate) scale symmetry with the inflaton field, the model accommodates successful slow-roll inflation, compatible with the observational data. We reach the conclusion that a pseudo-Nambu-Goldstone inflaton, within a classically scale-symmetric framework, yields lighter WIMPzillas.
We suggest a minimal model for GeV-scale Majorana Dark Matter (DM) coupled to the standard model lepton sector via a charged scalar singlet. We show that there is an anti-correlation between the spin-independent DM-Nucleus scattering cross-section ($ sigma_{mathrm{SI}}$) and the DM relic density for parameters values allowed by various theoretical and experimental constraints. Moreover, we find that even when DM couplings are of order unity, $sigma_{mathrm{SI}}$ is below the current experimental bound but above the neutrino floor. Furthermore, we show that the considered model can be probed at high-energy lepton colliders using e.g. the mono-Higgs production and same-sign charged Higgs pair production.
We present the first explicit calculation of leading two-loop corrections to the Higgs trilinear coupling $lambda_{hhh}$ in models with classical scale invariance (CSI), using the effective-potential approximation. Furthermore, we also study -- for t he first time at two loops -- the relation that appears between the masses of all states in CSI theories, due to the requirement of reproducing correctly the 125-GeV Higgs-boson mass. In addition to obtaining analytic results for general CSI models, we consider two particular examples of Beyond-the-Standard-Model theories with extended Higgs sectors, namely an $N$-scalar model (endowed with a global $O(N)$ symmetry) and a CSI version of the Two-Higgs-Doublet Model, and we perform detailed numerical studies of these scenarios. While at one loop the value of the Higgs trilinear coupling is identical in all CSI models, and deviates by approximately $82%$ from the (one-loop) SM prediction, we find that the inclusion of two-loop corrections lifts this universality and allows distinguishing different BSM scenarios with CSI. Taking into account constraints from perturbative unitarity and the relation among masses, we find for both types of scenarios we consider that at two loops $lambda_{hhh}$ deviates from its SM prediction by $100pm10%$ -- i.e. a quite significant further deviation with respect to the one-loop result of $sim 82%$.
116 - Manoranjan Dutta 2021
A minimal extension of the Standard Model (SM) by a vector-like fermion doublet and three right handed (RH) singlet neutrinos is proposed in order to explain dark matter and tiny neutrino mass simultaneously. The DM arises as a mixture of the neutral component of the fermion doublet and one of the RH neutrinos, both assumed to be odd under an imposed $mathcal{Z}_2$ symmetry. Being Majorana in nature, the DM escapes from $Z$-mediated direct search constraints to mark a significant difference from singlet-doublet Dirac DM. The other two $mathcal{Z}_2$ even heavy RH neutrinos give rise masses and mixing of light neutrinos via Type-I Seesaw mechanism. Relic density and direct search allowed parameter space for the model is investigated through detailed numerical scan.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا