ﻻ يوجد ملخص باللغة العربية
We confirm the convergence of the derivative expansion in two supersymmetric models via the functional renormalization group method. Using pseudo-spectral methods, high-accuracy results for the lowest energies in supersymmetric quantum mechanics and a detailed description of the supersymmetric analogue of the Wilson-Fisher fixed point of the three-dimensional Wess-Zumino model are obtained. The superscaling relation proposed earlier, relating the relevant critical exponent to the anomalous dimension, is shown to be valid to all orders in the supercovariant derivative expansion and for all $d ge 2$.
We revisit the leading irrelevant deformation of $mathcal{N}=4$ Super Yang-Mills theory that preserves sixteen supercharges. We consider the deformed theory on $S^3 times mathbb{R}$. We are able to write a closed form expression of the classical acti
We show that there is a non-trivial relationship between the dilaton of IIB supergravity, and the coset of scalar fields in five-dimensional, gauged N=8 supergravity. This has important consequences for the running of the gauge coupling in massive pe
A notable class of superconformal theories (SCFTs) in six dimensions is parameterized by an integer $N$, an ADE group $G$, and two nilpotent elements $mu_mathrm{L,R}$ in $G$. Nilpotent elements have a natural partial ordering, which has been conjectu
Motivated by its potential use in constraining the structure of 6D renormalization group flows, we determine the low energy dilaton-axion effective field theory of conformal and global symmetry breaking in 6D conformal field theories (CFTs). While ou
Scalar field theories with $mathbb{Z}_{2}$-symmetry are the traditional playground of critical phenomena. In this work these models are studied using functional renormalization group (FRG) equations at order $partial^2$ of the derivative expansion an