ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Gaussian Shape Discrimination with Spectroscopic Galaxy Surveys

297   0   0.0 ( 0 )
 نشر من قبل Joyce Byun
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] We consider how galaxy clustering data, from Mpc to Gpc scales, from upcoming large scale structure surveys, such as Euclid and DESI, can provide discriminating information about the bispectrum shape arising from a variety of inflationary scenarios. Through exploring in detail the weighting of shape properties in the calculation of the halo bias and halo mass function we show how they probe a broad range of configurations, beyond those in the squeezed limit, that can help distinguish between shapes with similar large scale bias behaviors. We assess the impact, on constraints for a diverse set of non-Gaussian shapes, of galaxy clustering information in the mildly non-linear regime, and surveys that span multiple redshifts and employ different galactic tracers of the dark matter distribution. Fisher forecasts are presented for a Euclid-like spectroscopic survey of H$alpha$-selected emission line galaxies (ELGs) using recent revisions of the expected H$alpha$ luminosity function, and a DESI-like survey, of luminous red galaxies (LRGs) and [O-II] doublet-selected ELGs, in combination with Planck-like CMB temperature and polarization data. While ELG samples provide better probes of shapes that are divergent in the squeezed limit, LRG constraints, centered below $z<1$, yield stronger constraints on shapes with scale-independent large-scale halo biases, such as the equilateral template. The ELG and LRG samples provide complementary degeneracy directions for distinguishing between different shapes. If the Gaussian galaxy bias is constrained to better than a percent level, such as can be determined from the galaxy bispectrum or weak lensing, then the LSS and CMB data could provide complementary constraints that will enable differentiation of bispectra with distinct theoretical origins but with similar large scale, squeezed-limit properties.



قيم البحث

اقرأ أيضاً

(Abridged) Estimating the uncertainty on the matter power spectrum internally (i.e. directly from the data) is made challenging by the simple fact that galaxy surveys offer at most a few independent samples. In addition, surveys have non-trivial geom etries, which make the interpretation of the observations even trickier, but the uncertainty can nevertheless be worked out within the Gaussian approximation. With the recent realization that Gaussian treatments of the power spectrum lead to biased error bars about the dilation of the baryonic acoustic oscillation scale, efforts are being directed towards developing non-Gaussian analyses, mainly from N-body simulations so far. Unfortunately, there is currently no way to tell how the non-Gaussian features observed in the simulations compare to those of the real Universe, and it is generally hard to tell at what level of accuracy the N-body simulations can model complicated non-linear effects such as mode coupling and galaxy bias. We propose in this paper a novel method that aims at measuring non-Gaussian error bars on the matter power spectrum directly from galaxy survey data. We utilize known symmetries of the 4-point function, Wiener filtering and principal component analysis to estimate the full covariance matrix from only four independent fields with minimal prior assumptions. With the noise filtering techniques and only four fields, we are able to recover the Fisher information obtained from a large N=200 sample to within 20 per cent, for k < 1.0 h/Mpc. Finally, we provide a prescription to extract a noise-filtered, non-Gaussian, covariance matrix from a handful of fields in the presence of a survey selection function.
318 - Joyce Byun , Rachel Bean 2013
A detection of primordial non-Gaussianity could transform our understanding of the fundamental theory of inflation. The precision promised by upcoming CMB and large-scale structure surveys raises a natural question: if a detection given a particular template is made, what does this truly tell us about the underlying theory? In this paper we present a systematic way to constrain a wide range of non-Gaussian shapes, including general single and multi-field models and models with excited initial states. We present a separable, divergent basis able to recreate many shapes in the literature to high accuracy with between three and seven basis functions. The basis allows shapes to be grouped into broad template classes, satisfying theoretically-relevant priors on their divergence properties in the squeezed limit. We forecast how well a Planck-like CMB survey could not only detect a general non-Gaussian signal but discern more about its shape, using existing templates and new ones we propose. This approach offers an opportunity to tie together minimal theoretical priors with observational constraints on the shape in general, and in the squeezed limit, to gain a deeper insight into what drove inflation.
During the next decade, gravitational waves will be observed from hundreds of binary inspiral events. When the redshifts of the host galaxies are known, these events can be used as `standard sirens, sensitive to the expansion rate of the Universe. Me asurements of the Hubble constant $H_0$ from standard sirens can be done independently of other cosmological probes, and events occurring at $z<0.1$ will allow us to infer $H_0$ independently of cosmological models. The next generation of spectroscopic galaxy surveys will play a crucial role in reducing systematic uncertainties in $H_0$ from standard sirens, particularly for the numerous `dark sirens which do not have an electromagnetic counterpart. In combination with large spectroscopic data sets, standard sirens with an EM counterpart are expected to constrain $H_0$ to $sim 1-2%$ precision within the next decade. This is competitive with the best estimates of $H_0$ obtained to date and will help illuminate the current tension between existing measurements. Information on the galaxies that host the gravitational wave events will also shed light on the origin and evolution of compact object binaries.
We develop a novel method to extract key cosmological information, which is primarily carried by the baryon acoustic oscillations (BAO) and redshift space distortions (RSD), from spectroscopic galaxy surveys, based on a joint principal component anal ysis (PCA) and Karhunen-Lo`eve (KL) data compression scheme. Comparing to the traditional methods using the multipoles or wedges of the galaxy correlation functions, we find that our method is able to extract the key information more efficiently, with a better control of the potential systematics, which manifests it as a powerful tool for clustering analysis for ongoing and forthcoming galaxy surveys.
We study the constraining power on primordial non-Gaussianity of future surveys of the large-scale structure of the Universe for both near-term surveys (such as the Dark Energy Survey - DES) as well as longer term projects such as Euclid and WFIRST. Specifically we perform a Fisher matrix analysis forecast for such surveys, using DES-like and Euclid-like configurations as examples, and take account of any expected photometric and spectroscopic data. We focus on two-point statistics and we consider three observables: the 3D galaxy power spectrum in redshift space, the angular galaxy power spectrum, and the projected weak-lensing shear power spectrum. We study the effects of adding a few extra parameters to the basic LCDM set. We include the two standard parameters to model the current value for the dark energy equation of state and its time derivative, w_0, w_a, and we account for the possibility of primordial non-Gaussianity of the local, equilateral and orthogonal types, of parameter fNL and, optionally, of spectral index n_fNL. We present forecasted constraints on these parameters using the different observational probes. We show that accounting for models that include primordial non-Gaussianity does not degrade the constraint on the standard LCDM set nor on the dark-energy equation of state. By combining the weak lensing data and the information on projected galaxy clustering, consistently including all two-point functions and their covariance, we find forecasted marginalised errors sigma (fNL) ~ 3, sigma (n_fNL) ~ 0.12 from a Euclid-like survey for the local shape of primordial non-Gaussianity, while the orthogonal and equilateral constraints are weakened for the galaxy clustering case, due to the weaker scale-dependence of the bias. In the lensing case, the constraints remain instead similar in all configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا