ﻻ يوجد ملخص باللغة العربية
Bulk electrical dissipation caused by charge-density-wave (CDW) depinning and sliding is a classic subject. We present a novel local, nanoscale mechanism describing the occurrence of mechanical dissipation peaks in the dynamics of an atomic force microscope tip oscillating above the surface of a CDW material. Local surface 2$pi$ slips of the CDW phase are predicted to take place giving rise to mechanical hysteresis and large dissipation at discrete tip surface distances. The results of our static and dynamic numerical simulations are believed to be relevant to recent experiments on NbSe$_2$; other candidate systems in which similar effects should be observable are also discussed.
Bulk electrical dissipation caused by charge-density-wave (CDW) depinning and sliding is a classic subject. We present a novel local, nanoscale mechanism describing the occurrence of mechanical dissipation peaks in the dynamics of an atomic force mic
A mechanism is proposed to describe the occurrence of distance-dependent dissipation peaks in the dynamics of an atomic force microscope tip oscillating over a surface characterized by a charge density wave state. The dissipation has its origin in th
The two charge-density wave (CDW) transitions in NbSe$_3$ %at wave numbers at $bm{q_1}$ and $bm{q_2}$, occurring at the surface were investigated by scanning tunneling microscopy (STM) on emph{in situ} cleaved $(bm{b},bm{c})$ plane. The temperature d
We investigate the charge density wave transport in a quasi-one-dimensional conductor, orthorhombic tantalum trisulfide ($o$-TaS$_3$), by applying a radio-frequency ac voltage. We find a new ac-dc interference spectrum in the differential conductance
ABC-stacked trilayer graphenes chiral band structure results in three ($n=0,1,2$) Landau level orbitals with zero kinetic energy. This unique feature has important consequences on the interaction driven states of the 12-fold degenerate (including spi