ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarizability relations across real and virtual Compton scattering processes

60   0   0.0 ( 0 )
 نشر من قبل Vladimir Pascalutsa
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive two relations involving spin polarizabilities of a spin-1/2 particle and consider their empirical implications for the proton. Using the empirical values of the proton anomalous magnetic moment, electric and magnetic charge radii, moments of the spin structure functions $g_1$, $g_2$, and of two spin polarizabilities, the present relations constrain the low-momentum behavior of generalized polarizabilities appearing in virtual Compton scattering. In the case of the proton, the dispersive model evaluations of the spin and generalized polarizabilities appear to be consistent with these relations. The ongoing measurements of different electromagnetic observables at the MAMI, Jefferson Lab, and HI$gamma$S facilities may be able to put these relations to a test, or use them to unravel the low-energy spin structure of the nucleon.

قيم البحث

اقرأ أيضاً

143 - E.J.Downie , H.Fonvieille 2011
We give an overview of low-energy Compton scattering (gamma^(*) p --> gamma p) with a real or virtual incoming photon. These processes allow the investigation of one of the fundamental properties of the nucleon, i.e. how its internal structure deform s under an applied static electromagnetic field. Our knowledge of nucleon polarisabilities and their generalization to non-zero four-momentum transfer will be reviewed, including the presently ongoing experiments and future perspectives.
152 - H.Fonvieille 2019
This review gives an update on virtual Compton scattering (VCS) off the nucleon, $gamma^* N to N gamma$, in the low-energy regime. We recall the theoretical formalism related to the generalized polarizabilities (GPs) and model predictions for these o bservables. We present the GP extraction methods that are used in the experiments: the approach based on the low-energy theorem for VCS and the formalism of Dispersion Relations. We then review the experimental results, with a focus on the progress brought by recent experimental data on proton generalized polarizabilities, and we conclude by some perspectives in the field of VCS at low energy.
119 - Thomas R. Hemmert 1996
We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinber gs power counting. With this calculation we can determine the second- and fourth-order structure-dependent coefficients of the general low-energy expansion of the spin-averaged VCS amplitude based on gauge invariance, crossing symmetry and the discrete symmetries. We discuss the kinematical regime to which our calculation can be applied and compare our expansion with the multipole expansion by Guichon, Liu and Thomas. We establish the connection of our calculation with the generalized polarizabilities of the nucleon where it is possible.
We perform an expansion of the virtual Compton scattering amplitude for low energies and low momenta and show that this expansion covers the transition from the regime to be investigated in the scheduled photon electroproduction experiments to the re al Compton scattering regime. We discuss the relation of the generalized polarizabilities of virtual Compton scattering to the polarizabilities of real Compton scattering.
We analyze virtual Compton scattering off the nucleon at low energies in a covariant, model-independent formalism. We define a set of invariant functions which, once the irregular nucleon pole terms have been subtracted in a gauge-invariant fashion , is free of poles and kinematical zeros. The covariant treatment naturally allows one to implement the constraints due to Lorentz and gauge invariance, crossing symmetry, and the discrete symmetries. In particular, when applied to the $epto epgamma$ reaction, charge-conjugation symmetry in combination with nucleon crossing generates four relations among the ten originally proposed generalized polarizabilities of the nucleon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا