ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Cosmological Mass Function

254   0   0.0 ( 0 )
 نشر من قبل Marcelo Byrro Ribeiro
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Amanda R. Lopes




اسأل ChatGPT حول البحث

We study the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach using observational data provided by galaxy redshift surveys. Starting from the theory of Ribeiro & Stoeger (2003, arXiv:astro-ph/0304094) between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity $L$ and the average galactic mass $mathcal{M}_g$ are computed in terms of the redshift. $mathcal{M}_g$ is also alternatively estimated by a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allows us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range $0.5 < z < 5.0$ and its LF Schechter parameters in the B-band, as well as this samples stellar mass-to-light ratio and its GSMF data. Assuming ${mathcal{M}_{g_0}} approx 10^{11} mathcal{M}_odot$ as the local value of the average galactic mass, the LF approach results in $L_{B} propto (1+z)^{(2.40 pm 0.03)}$ and $mathcal{M}_g propto (1+z)^{(1.1pm0.2)}$. However, using the GSMF results produces $mathcal{M}_g propto (1+z)^{(-0.58 pm 0.22)}$. We chose the latter result as it is less biased. We then obtained the theoretical quantities of interest, such as the differential number counts, to calculate the GCMF, which can be fitted by a Schechter function. The derived GCMF follows theoretical predictions in which the less massive objects form first, being followed later by more massive ones. In the range $0.5 < z < 2.0$ the GCMF has a strong variation that can be interpreted as a higher rate of galaxy mergers or as a strong evolution in the star formation history of these galaxies.



قيم البحث

اقرأ أيضاً

219 - Han-Seek Kim 2015
We explore the galaxy formation physics governing the low mass end of the HI mass function in the local Universe. Specifically, we predict the effects on the HI mass function of varying i) the strength of photoionisation feedback and the redshift of the end of the epoch of reionization, ii) the cosmology, iii) the supernovae feedback prescription, and iv) the efficiency of star formation. We find that the shape of the low-mass end of the HI mass function is most affected by the critical halo mass below which galaxy formation is suppressed by photoionisation heating of the intergalactic medium. We model the redshift dependence of this critical dark matter halo mass by requiring a match to the low-mass end of the HI mass function. The best fitting critical dark matter halo mass decreases as redshift increases in this model, corresponding to a circular velocity of $sim 50 , {rm km ,s}^{-1}$ at $z=0$, $sim 30 , {rm km, s}^{-1}$ at $z sim 1$ and $sim 12 , {rm km , s}^{-1}$ at $z=6$. We find that an evolving critical halo mass is required to explain both the shape and abundance of galaxies in the HI mass function below $M_{rm HI} sim 10^{8} h^{-2} {rm M_{odot}}$. The model makes specific predictions for the clustering strength of HI-selected galaxies with HI masses > $10^{6} h^{-2} {rm M_{odot}}$ and $> 10^{7} h^{-2} {rm M_{odot}}$ and for the relation between the HI and stellar mass contents of galaxies which will be testable with upcoming surveys with the Square Kilometre Array and its pathfinders. We conclude that measurements of the HI mass function at $z ge 0$ will lead to an improvement in our understanding of the net effect of photoionisation feedback on galaxy formation and evolution.
In Sedgwick et al. (2019) we introduced and utilised a method to combat surface brightness and mass biases in galaxy sample selection, using core-collapse supernovae (CCSNe) as pointers towards their host galaxies, in order to: (i) search for low-sur face brightness galaxies (LSBGs); (ii) assess the contributions of galaxies at a given mass to the star-formation-rate density (SFRD); and (iii) infer from this, using estimates of specific star-formation (SF) rate, the form of the SF-galaxy stellar mass function (GSMF). A CCSN-selection of SF-galaxies allows a probe of the form of the SFRD and GSMF deep into the dwarf galaxy mass regime. In the present work, we give improved constraints on our estimates of the SFRD and star-forming GSMF, in light of improved photometric redshift estimates required for estimates of galaxy stellar mass. The results are consistent with a power-law increase to SF-galaxy number density down to our low stellar mass limit of $sim 10^{6.2}$ M$_{odot}$. No deviation from the high-mass version of the surface brightness - mass relation is found in the dwarf mass regime. These findings imply no truncation to galaxy formation processes at least down to $sim 10^{6.2}$ M$_{odot}$.
We measure the stellar mass function (SMF) of galaxies in the COSMOS field up to $zsim6$. We select them in the near-IR bands of the COSMOS2015 catalogue, which includes ultra-deep photometry from UltraVISTA-DR2, SPLASH, and Subaru/Hyper-SuprimeCam. At $z>2.5$ we use new precise photometric redshifts with error $sigma_z=0.03(1+z)$ and an outlier fraction of $12%$, estimated by means of the unique spectroscopic sample of COSMOS. The increased exposure time in the DR2, along with our panchromatic detection strategy, allow us to improve the stellar mass completeness at high $z$ with respect to previous UltraVISTA catalogues. We also identify passive galaxies through a robust colour-colour selection, extending their SMF estimate up to $z=4$. Our work provides a comprehensive view of galaxy stellar mass assembly between $z=0.1$ and 6, for the first time using consistent estimates across the entire redshift range. We fit these measurements with a Schechter function, correcting for Eddington bias. We compare the SMF fit with the halo mass function predicted from $Lambda$CDM simulations. We find that at $z>3$ both functions decline with a similar slope in the high-mass end. This feature could be explained assuming that the mechanisms that quench star formation in massive haloes become less effective at high redshift; however further work needs to be done to confirm this scenario. Concerning the SMF low-mass end, it shows a progressive steepening as moving towards higher redshifts, with $alpha$ decreasing from $-1.47_{-0.02}^{+0.02}$ at $zsimeq0.1$ to $-2.11_{-0.13}^{+0.30}$ at $zsimeq5$. This slope depends on the characterisation of the observational uncertainties, which is crucial to properly remove the Eddington bias. We show that there is currently no consensus on the method to quantify such errors: different error models result in different best-fit Schechter parameters. [Abridged]
237 - Mark Vogelsberger 2019
Over the last decades, cosmological simulations of galaxy formation have been instrumental for advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the non-linear evolution of galaxies modeling a var iety of physical processes over an enormous range of scales. A better understanding of the physics relevant for shaping galaxies, improved numerical methods, and increased computing power have led to simulations that can reproduce a large number of observed galaxy properties. Modern simulations model dark matter, dark energy, and ordinary matter in an expanding space-time starting from well-defined initial conditions. The modeling of ordinary matter is most challenging due to the large array of physical processes affecting this matter component. Cosmological simulations have also proven useful to study alternative cosmological models and their impact on the galaxy population. This review presents a concise overview of the methodology of cosmological simulations of galaxy formation and their different applications.
We use spectral stacking to measure the contribution of galaxies of different masses and in different hierarchies to the cosmic atomic hydrogen (HI) mass density in the local Universe. Our sample includes 1793 galaxies at $z < 0.11$ observed with the Westerbork Synthesis Radio Telescope, for which Sloan Digital Sky Survey spectroscopy and hierarchy information are also available. We find a cosmic HI mass density of $Omega_{rm HI} = (3.99 pm 0.54)times 10^{-4} h_{70}^{-1}$ at $langle zrangle = 0.065$. For the central and satellite galaxies, we obtain $Omega_{rm HI}$ of $(3.51 pm 0.49)times 10^{-4} h_{70}^{-1}$ and $(0.90 pm 0.16)times 10^{-4} h_{70}^{-1}$, respectively. We show that galaxies above and below stellar masses of $sim$10$^{9.3}$ M$_{odot}$ contribute in roughly equal measure to the global value of $Omega_{rm HI}$. While consistent with estimates based on targeted HI surveys, our results are in tension with previous theoretical work. We show that these differences are, at least partly, due to the empirical recipe used to set the partition between atomic and molecular hydrogen in semi-analytical models. Moreover, comparing our measurements with the cosmological semi-analytic models of galaxy formation {sc Shark} and GALFORM reveals gradual stripping of gas via ram pressure works better to fully reproduce the properties of satellite galaxies in our sample, than strangulation. Our findings highlight the power of this approach in constraining theoretical models, and confirm the non-negligible contribution of massive galaxies to the HI mass budget of the local Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا