ترغب بنشر مسار تعليمي؟ اضغط هنا

Degeneracy between primordial non-Gaussianity and interaction in the dark sector

68   0   0.0 ( 0 )
 نشر من قبل Mahmoud Hashim
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If dark energy and dark matter interact via exchange of energy and momentum, then this may affect the galaxy power spectrum on large scales. When this happens, it may be degenerate with the signal from primordial non-Gaussianity via scale-dependent bias. We consider a class of interacting dark energy models and show that the matter overdensity is scale-dependent on large scales. We estimate the effective non-Gaussianity arising from the large-scale effects of interaction in the dark sector. The signal of dark sector interaction can be disentangled from a primordial non-Gaussian signal by measuring the power at two redshifts.



قيم البحث

اقرأ أيضاً

Here we review the present status of modelling of and searching for primordial non-Gaussianity of cosmological perturbations. After introducing the models for non-Gaussianity generation during inflation, we discuss the search for non-Gaussian signatu res in the Cosmic Microwave Background and in the Large-Scale Structure of the Universe.
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One key ingredient that underlies cosmological observables is that the field that sources the observed structure is assumed to be initially Gaussian with high precision. Nevertheless, a minimal deviation from Gaussianityis perhaps the most robust theoretical prediction of models that explain the observed Universe; itis necessarily present even in the simplest scenarios. In addition, most inflationary models produce far higher levels of non-Gaussianity. Since non-Gaussianity directly probes the dynamics in the early Universe, a detection would present a monumental discovery in cosmology, providing clues about physics at energy scales as high as the GUT scale.
The statistical properties of the primordial perturbations contain clues about the origins of those fluctuations. Although the Planck collaboration has recently obtained tight constraints on primordial non-gaussianity from cosmic microwave background measurements, it is still worthwhile to mine upcoming data sets in effort to place independent or competitive limits. The ionized bubbles that formed at redshift z~6-20 during the Epoch of Reionization are seeded by primordial overdensities, and so the statistics of the ionization field at high redshift are related to the statistics of the primordial field. Here we model the effect of primordial non-gaussianity on the reionization field. The epoch and duration of reionization are affected as are the sizes of the ionized bubbles, but these changes are degenerate with variations in the properties of the ionizing sources and the surrounding intergalactic medium. A more promising signature is the power spectrum of the spatial fluctuations in the ionization field, which may be probed by upcoming 21 cm surveys. This has the expected 1/k^2 dependence on large scales, characteristic of a biased tracer of the matter field. We project how well upcoming 21 cm observations will be able to disentangle this signal from foreground contamination. Although foreground cleaning inevitably removes the large-scale modes most impacted by primordial non-gaussianity, we find that primordial non-gaussianity can be separated from foreground contamination for a narrow range of length scales. In principle, futuristic redshifted 21 cm surveys may allow constraints competitive with Planck.
We study primordial non-gaussianity in supersolid inflation. The dynamics of supersolid is formulated in terms of an effective field theory based on four scalar fields with a shift symmetric action minimally coupled with gravity. In the scalar sector , there are two phonon-like excitations with a kinetic mixing stemming from the completely spontaneous breaking of diffeomorphism. In a squeezed configuration, $f_{text{NL}}$ of scalar perturbations is angle dependent and not proportional to slow-roll parameters showing a blunt violation of the Maldacena consistency relation. Contrary to solid inflation, the violation persists even after an angular average and generically the amount of non-gaussianity is significant. During inflation, non-gaussianity in the TSS and TTS sector is enhanced in the same region of the parameters space where the secondary production of gravitational waves is sizeable enough to enter in the sensitivity region of LISA, while the scalar $f_{text{NL}}$ is still within the current experimental limits.
A phenomenological attempt at alleviating the so-called coincidence problem is to allow the dark matter and dark energy to interact. By assuming a coupled quintessence scenario characterized by an interaction parameter $epsilon$, we investigate the p recision in the measurements of the expansion rate $H(z)$ required by future experiments in order to detect a possible deviation from the standard $Lambda$CDM model ($epsilon = 0$). We perform our analyses at two levels, namely: through Monte Carlo simulations based on $epsilon$CDM models, in which $H(z)$ samples with different accuracies are generated and through an analytic method that calculates the error propagation of $epsilon$ as a function of the error in $H(z)$. We show that our analytical approach traces simulations accurately and find that to detect an interaction {using $H(z)$ data only, these must reach an accuracy better than 1%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا