ﻻ يوجد ملخص باللغة العربية
If dark energy and dark matter interact via exchange of energy and momentum, then this may affect the galaxy power spectrum on large scales. When this happens, it may be degenerate with the signal from primordial non-Gaussianity via scale-dependent bias. We consider a class of interacting dark energy models and show that the matter overdensity is scale-dependent on large scales. We estimate the effective non-Gaussianity arising from the large-scale effects of interaction in the dark sector. The signal of dark sector interaction can be disentangled from a primordial non-Gaussian signal by measuring the power at two redshifts.
Here we review the present status of modelling of and searching for primordial non-Gaussianity of cosmological perturbations. After introducing the models for non-Gaussianity generation during inflation, we discuss the search for non-Gaussian signatu
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One
The statistical properties of the primordial perturbations contain clues about the origins of those fluctuations. Although the Planck collaboration has recently obtained tight constraints on primordial non-gaussianity from cosmic microwave background
We study primordial non-gaussianity in supersolid inflation. The dynamics of supersolid is formulated in terms of an effective field theory based on four scalar fields with a shift symmetric action minimally coupled with gravity. In the scalar sector
A phenomenological attempt at alleviating the so-called coincidence problem is to allow the dark matter and dark energy to interact. By assuming a coupled quintessence scenario characterized by an interaction parameter $epsilon$, we investigate the p