ترغب بنشر مسار تعليمي؟ اضغط هنا

On the two remaning issues in the gauge-invariant decomposition problem of the nucleon spin

112   0   0.0 ( 0 )
 نشر من قبل Masashi Wakamatsu
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Masashi Wakamatsu




اسأل ChatGPT حول البحث

The question whether the total gluon angular momentum in the nucleon can be decomposed into its spin and orbital parts without conflict with the gauge-invariance principle has been an object of long-lasting debate. Despite a remarkable progress achieved through the recent intensive researches, the following two issues still remains to be clarified more transparently. The first issue is to resolve the apparent conflict between the proposed gauge-invariant decomposition of the total gluon angular momentum and the textbook statement that the total angular momentum of the photon cannot be gauge-invariantly decomposed into its spin and orbital parts. We show that this problem is also inseparably connected with the uniqueness or non-uniqueness problem of the nucleon spin decomposition. The second practically more important issue is that, among the two physically inequivalent decompositions of the nucleon spin, i.e. the canonical type decomposition and the mechanical type decomposition, which can we say is more physical or closer to direct observation ? In the present paper, we try to answer both these questions as clearly as possible.



قيم البحث

اقرأ أيضاً

166 - Masashi Wakamatsu 2014
Is gauge-invariant complete decomposition of the nucleon spin possible? Although it is a difficult theoretical question which has not reached a complete consensus yet, a general agreement now is that there are at least two physically inequivalent gau ge-invariant decompositions (I) and (II) of the nucleon. %The one is a nontrivial gauge-invariant %generalization of the Jaffe-Manohar decomposition. %The other is an extension of the Ji decomposition, which allows %a gauge-invariant decomposition of the total gluon angular %momentum into the intrinsic spin and orbital parts. In these two decompositions, the intrinsic spin parts of quarks and gluons are just common. What discriminate these two decompositions are the orbital angular momentum parts. The orbital angular momenta of quarks and gluons appearing in the decomposition (I) are the so-called mechanical orbital angular momenta, while those appearing in the decomposition (II) are the generalized (gauge-invariant) canonical ones. By this reason, these decompositions are also called the mechanical and canonical decompositions of the nucleon spin, respectively. A crucially important question is which decomposition is more favorable from the observational viewpoint. The main objective of this concise review is to try to answer this question with careful consideration of recent intensive researches on this problem.
63 - Masashi Wakamatsu 2016
A general consensus now is that there are two physically inequivalent complete decompositions of the nucleon spin, i.e. the decomposition of the canonical type and that of mechanical type. The well-known Jaffe-Manohar decomposition is of the former t ype. Unfortunately, there is a wide-spread misbelief that this decomposition matches the partonic picture, which states that motion of quarks in the nucleon is approximately free. In the present monograph, we reveal that this understanding is not necessarily correct and that the Jaffe-Manohar decomposition is not such a decomposition, which natively reflects the intrinsic (or static) orbital angular momentum structure of the nucleon.
119 - Masashi Wakamatsu 2013
The recent controversy on the nucleon spin decomposition problem is critically overviewed. We argue that there exist two and only two physically inequivalent gauge-invariant decompositions of the longitudinal nucleon spin, contrary to the rapidly spr eading view in the QCD spin physics community that there are infinitely many decompositions of the nucleon spin.
The nucleon is naturally viewed as a bipartite system of valence spin -- defined by its non-vanishing chiral charge -- and non-valence or sea spin. The sea spin can be traced over to give a reduced density matrix, and it is shown that the resulting e ntanglement entropy acts as an order parameter of chiral symmetry breaking in the nucleon. In the large-$N_c$ limit, the entanglement entropy vanishes and the valence spin accounts for all of the nucleon spin, while in the limit of maximal entanglement entropy, the nucleon loses memory of the valence spin and consequently has spin dominated by the sea. The nucleon state vector in the chiral basis, fit to low-energy data, gives a valence spin content consistent with experiment and lattice QCD determinations, and has large entanglement entropy.
258 - Masashi Wakamatsu 2013
We discuss the uniqueness or non-uniqueness problem of the decomposition of the gluon field into the physical and pure-gauge components, which is the basis of the recently proposed two physically inequivalent gauge-invariant decompositions of the nuc leon spin. It is crucialy important to recognize the fact that the standard gauge fixing procedure is essentially a process of projecting out the physical components of the massless gauge field. A complexity of the nonabelian gauge theory as compared with the abelian case is that a closed expression for the physical component can be given only with use of the non-local Wilson line, which is generally path-dependent. It is known that, by choosing an infinitely long straight-line path in space and time, the direction of which is characterized by a constant 4-vector $n^mu$, one can cover a class of gauge called the general axial gauge, containing three popular gauges, i.e. the temporal, the light-cone, and the spatial axial gauge. Within this general axial gauge, we have calculated the 1-loop evolution matrix for the quark and gluon longitudinal spins in the nucleon. We found that the final answer is exactly the same independently of the choices of $n^mu$, which amounts to proving the gauge-independence and path-independence simultaneously, although within a restricted class of gauges and paths. By drawing on all of these findings together with well-established knowledge from gauge theories, we argue against the rapidly spreading view in the community that there are infinitely many decompositions of the nucleon spin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا