ﻻ يوجد ملخص باللغة العربية
We study an odd-dimensional analogue of the Goldberg conjecture for compact Einstein almost Kahler manifolds. We give an explicit non-compact example of an Einstein almost cokahler manifold that is not cokahler. We prove that compact Einstein almost cokahler manifolds with non-negative $*$-scalar curvature are cokahler (indeed, transversely Calabi-Yau); more generally, we give a lower and upper bound for the $*$-scalar curvature in the case that the structure is not cokahler. We prove similar bounds for almost Kahler Einstein manifolds that are not Kahler.
Let $rho_0$ be an action of a Lie group on a manifold with boundary that is transitive on the interior. We study the set of actions that are topologically conjugate to $rho_0$, up to smooth or analytic change of coordinates. We show that in many case
This article is an overview of some of the remarkable progress that has been made in Sasaki-Einstein geometry over the last decade, which includes a number of new methods of constructing Sasaki-Einstein manifolds and obstructions.
We study the pseudoriemannian geometry of almost parahermitian manifolds, obtaining a formula for the Ricci tensor of the Levi-Civita connection. The formula uses the intrinsic torsion of an underlying SL(n,R)-structure; we express it in terms of ext
In this paper, we use the canonical connection instead of Levi-Civita connection to study the smooth maps between almost Hermitian manifolds, especially, the pseudoholomorphic ones. By using the Bochner formulas, we obtian the $C^2$-estimate of canon
We study the geometry of almost contact pseudo-metric manifolds in terms of tensor fields $h:=frac{1}{2}pounds _xi varphi$ and $ell := R(cdot,xi)xi$, emphasizing analogies and differences with respect to the contact metric case. Certain identities in