ﻻ يوجد ملخص باللغة العربية
Long-duration gamma-ray bursts (GRBs) are thought to come from the core-collapse of Wolf-Rayet stars. Whereas their stellar masses $M_*$ have a rather narrow distribution, the population of GRBs is very diverse, with gamma-ray luminosities $L_gamma$ spanning several orders of magnitude. This suggests the existence of a hidden stellar variable whose burst-to-burst variation leads to a spread in $L_gamma$. Whatever this hidden variable is, its variation should not noticeably affect the shape of GRB lightcurves, which display a constant luminosity (in a time-average sense) followed by a sharp drop at the end of the burst seen with Swift/XRT. We argue that such a hidden variable is progenitor stars large-scale magnetic flux. Shortly after the core collapse, most of stellar magnetic flux accumulates near the black hole (BH) and remains there. The flux extracts BH rotational energy and powers jets of roughly a constant luminosity, $L_j$. However, once BH mass accretion rate $dot M$ falls below $sim L_j/c^2$, the flux becomes dynamically important and diffuses outwards, with the jet luminosity set by the rapidly declining mass accretion rate, $L_jsim dot M c^2$. This provides a potential explanation for the sharp end of GRBs and the universal shape of their lightcurves. During the GRB, gas infall translates spatial variation of stellar magnetic flux into temporal variation of $L_j$. We make use of the deviations from constancy in $L_j$ to perform stellar magnetic flux tomography. Using this method, we infer the presence of magnetised tori in the outer layers of progenitor stars for GRB 920513 and GRB 940210.
Double neutron star (DNS) merger events are promosing candidates of short Gamma-ray Burst (sGRB) progenitors as well as high-frequecy gravitational wave (GW) emitters. On August 17, 2017, such a coinciding event was detected by both the LIGO-Virgo gr
Relations linking the temporal or/and spectral properties of the prompt emission of gamma-ray bursts (hereafter GRBs) to the absolute luminosity are of great importance as they both constrain the radiation mechanisms and represent potential distance
The long gamma ray bursts (GRBs) may arise from the core collapse of massive stars. However, the long GRB rate does not follow the star formation rate (SFR) at high redshifts. In this Letter, we focus on the binary merger model and consider the high
Aims. With an observed and rest-frame duration of < 2s and < 0.5s, respectively, GRB090426 could be classified as a short GRB. The prompt detection, both from space and ground-based telescopes, of a bright optical counterpart to this GRB offered a un
High-redshift gamma-ray bursts have several advantages for the study of the distant universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based