ﻻ يوجد ملخص باللغة العربية
We demonstrate control over attosecond pulse generation and shaping by numerically optimizing the synthesis of few-cycle to sub-cycle driver waveforms. The optical waveform synthesis takes place in an ultrabroad spectral band covering the ultraviolet-infrared domain. These optimized driver waves are used for ultrashort single and double attosecond pulse production (with tunable separation) revealing the potentials of the light wave synthesizer device demonstrated by Wirth et al. [Science 334, 195 (2011)]. The results are also analyzed with respect to attosecond pulse propagation phenomena.
Attosecond science promises to reveal the most fundamental electronic dynamics occurring in matter and it can develop further by meeting two linked technological goals related to high-order harmonic sources: higher photon flux (permitting to measure
We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significan
In contrast to the case of quasi-monochromatic waves, a focused optical pulse in the few-cycle limit may exhibit two independent curved wavefronts, associated with phase and group retardations, respectively. Focusing optical elements will generally a
We numerically investigate the use of strong THz radiation in assisting single attosecond pulse generation by few-cycle, 800 nm laser pulses. We optimize focusing conditions to generate short and powerful single attosecond pulses of high-energy photo
The two basic approaches underlying the metrology of attosecond pulse trains are compared, i.e. the 2nd order Intensity Volume Autocorrelation and the Resolution of Attosecond Beating by Interference of Two photon Transitions (RABITT). They give rath