ﻻ يوجد ملخص باللغة العربية
The electromagnetic polarizabilities of the nucleon are fundamental properties that describe its response to external electric and magnetic fields. They can be extracted from Compton-scattering data --- and have been, with good accuracy, in the case of the proton. In contradistinction, information for the neutron requires the use of Compton scattering from nuclear targets. Here we report a new measurement of elastic photon scattering from deuterium using quasimonoenergetic tagged photons at the MAX IV Laboratory in Lund, Sweden. These first new data in more than a decade effectively double the world dataset. Their energy range overlaps with previous experiments and extends it by 20 MeV to higher energies. An analysis using Chiral Effective Field Theory with dynamical Delta(1232) degrees of freedom shows the data are consistent with and within the world dataset. After demonstrating that the fit is consistent with the Baldin sum rule, extracting values for the isoscalar nucleon polarizabilities and combining them with a recent result for the proton, we obtain the neutron polarizabilities as alpha_n = [11.55 +/- 1.25(stat) +/- 0.2(BSR) +/- 0.8(th)] X 10^{-4} fm^3 and beta_n = [3.65 -/+ 1.25(stat) +/- 0.2(BSR) -/+ 0.8(th)] X 10^{-4} fm3, with chi^2 = 45.2 for 44 degrees of freedom.
Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $oslash$ $time
The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to measure the nucleon spin polarizabilities is through polarized Compton scattering. Double-polari
To extract the charge radius of the proton, $r_{p}$, from the electron scattering data, the PRad collaboration at Jefferson Lab has developed a rigorous framework for finding the best functional forms - the fitters - for a robust extraction of $r_{p}
The electromagnetic polarizabilities of the nucleon are fundamental nucleon-structure observables that characterize its response to external electromagnetic fields. The neutron polarizabilities can be accessed from Compton-scattering data on light nu
This review gives an update on virtual Compton scattering (VCS) off the nucleon, $gamma^* N to N gamma$, in the low-energy regime. We recall the theoretical formalism related to the generalized polarizabilities (GPs) and model predictions for these o