ترغب بنشر مسار تعليمي؟ اضغط هنا

Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis

204   0   0.0 ( 0 )
 نشر من قبل Gorm Bruun Andresen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new high-resolution global renewable energy atlas ({REatlas}) that can be used to calculate customised hourly time series of wind and solar PV power generation. In this paper, the atlas is applied to produce 32-year-long hourly model wind power time series for Denmark for each historical and future year between 1980 and 2035. These are calibrated and validated against real production data from the period 2000 to 2010. The high number of years allows us to discuss how the characteristics of Danish wind power generation varies between individual weather years. As an example, the annual energy production is found to vary by $pm10%$ from the average. Furthermore, we show how the production pattern change as small onshore turbines are gradually replaced by large onshore and offshore turbines. Finally, we compare our wind power time series for 2020 to corresponding data from a handful of Danish energy system models. The aim is to illustrate how current differences in model wind may result in significant differences in technical and economical model predictions. These include up to $15%$ differences in installed capacity and $40%$ differences in system reserve requirements.



قيم البحث

اقرأ أيضاً

The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording, and analyzing the dynamics of different processes, an extensi ve organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series and over 9000 time-series analysis algorithms are analyzed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines, and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heart beat intervals, speech signals, and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.
We develop a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA). We relate our multifractal DFA method to the standard partition function-based mul tifractal formalism, and prove that both approaches are equivalent for stationary signals with compact support. By analyzing several examples we show that the new method can reliably determine the multifractal scaling behavior of time series. By comparing the multifractal DFA results for original series to those for shuffled series we can distinguish multifractality due to long-range correlations from multifractality due to a broad probability density function. We also compare our results with the wavelet transform modulus maxima (WTMM) method, and show that the results are equivalent.
When dealing with non-stationary systems, for which many time series are available, it is common to divide time in epochs, i.e. smaller time intervals and deal with short time series in the hope to have some form of approximate stationarity on that t ime scale. We can then study time evolution by looking at properties as a function of the epochs. This leads to singular correlation matrices and thus poor statistics. In the present paper, we propose an ensemble technique to deal with a large set of short time series without any consideration of non-stationarity. We randomly select subsets of time series and thus create an ensemble of non-singular correlation matrices. As the selection possibilities are binomially large, we will obtain good statistics for eigenvalues of correlation matrices, which are typically not independent. Once we defined the ensemble, we analyze its behavior for constant and block-diagonal correlations and compare numerics with analytic results for the corresponding correlated Wishart ensembles. We discuss differences resulting from spurious correlations due to repeatitive use of time-series. The usefulness of this technique should extend beyond the stationary case if, on the time scale of the epochs, we have quasi-stationarity at least for most epochs.
The performance of the multifractal detrended analysis on short time series is evaluated for synthetic samples of several mono- and multifractal models. The reconstruction of the generalized Hurst exponents is used to determine the range of applicabi lity of the method and the precision of its results as a function of the decreasing length of the series. As an application the series of the daily exchange rate between the U.S. dollar and the euro is studied.
60 - I. Narsky 2005
Modern analysis of high energy physics (HEP) data needs advanced statistical tools to separate signal from background. A C++ package has been implemented to provide such tools for the HEP community. The package includes linear and quadratic discrimin ant analysis, decision trees, bump hunting (PRIM), boosting (AdaBoost), bagging and random forest algorithms, and interfaces to the standard backpropagation neural net and radial basis function neural net implemented in the Stuttgart Neural Network Simulator. Supplemental tools such as bootstrap, estimation of data moments, and a test of zero correlation between two variables with a joint elliptical distribution are also provided. The package offers a convenient set of tools for imposing requirements on input data and displaying output. Integrated in the BaBar computing environment, the package maintains a minimal set of external dependencies and therefore can be easily adapted to any other environment. It has been tested on many idealistic and realistic examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا