ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy and Heat Fluctuations in a Temperature Quench

113   0   0.0 ( 0 )
 نشر من قبل Marco Zannetti
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fluctuations of energy and heat are investigated during the relaxation following the instantaneous temperature quench of an extended system. Results are obtained analytically for the Gaussian model and for the large $N$ model quenched below the critical temperature $T_C$. The main finding is that fluctuations exceeding a critical threshold do condense. Though driven by a mechanism similar to that of Bose-Einstein condensation, this phenomenon is an out-of-equilibrium feature produced by the breaking of energy equipartition occurring in the transient regime. The dynamical nature of the transition is illustrated by phase diagrams extending in the time direction.



قيم البحث

اقرأ أيضاً

66 - F. Sattin 2018
Superstatistics [C. Beck and E.G.D. Cohen, Physica A 322, 267 (2003)] is a formalism aimed at describing statistical properties of a generic extensive quantity E in complex out-of-equilibrium systems in terms of a superposition of equilibrium canonic al distributions weighted by a function P(beta) of the intensive thermodynamic quantity beta conjugate to E. It is commonly assumed that P(beta) is determined by the spatiotemporal dynamics of the system under consideration. In this work we show by examples that, in some cases fulfilling all the conditions for the superstatistics formalism to be applicable, P(beta) is actually affected also by the way the measurement of E is performed, and thus is not an intrinsic property of the system.
60 - J. Cividini , A. Kundu , A. Miron 2016
A framework for studying the effect of the coupling to the heat bath in models exhibiting anomalous heat conduction is described. The framework is applied to the harmonic chain with momentum exchange model where the non-trivial temperature profile is calculated. In this approach one first uses the hydrodynamic (HD) equations to calculate the equilibrium current-current correlation function in large but finite chains, explicitly taking into account the BCs resulting from the coupling to the heat reservoirs. Making use of a linear response relation, the anomalous conductivity exponent $alpha$ and an integral equation for the temperature profile are obtained. The temperature profile is found to be singular at the boundaries with an exponent which varies continuously with the coupling to the heat reservoirs expressed by the BCs. In addition, the relation between the harmonic chain and a system of noninteracting L{e}vy walkers is made explicit, where different BCs of the chain correspond to different reflection coefficients of the L{e}vy particles.
120 - Liyan Liu , Jiulin Du 2008
We investigate the general property of the energy fluctuation for the canonical ensemble in Tsallis statistics and the ensemble equivalence. By taking the ideal gas and the non-interacting harmonic oscillators as examples, we show that, when the part icle number N is large enough, the relative fluctuation of the energy is proportional to 1/N in the new statistics, instead of square root of 1/N in Boltzmann-Gibbs statistics. Thus the equivalence between the microcanonical and the canonical ensemble still holds in Tsallis statistics.
We present a detailed investigation of the probability density function (PDF) of order parameter fluctuations in the finite two-dimensional XY (2dXY) model. In the low temperature critical phase of this model, the PDF approaches a universal non-Gauss ian limit distribution in the limit T-->0. Our analysis resolves the question of temperature dependence of the PDF in this regime, for which conflicting results have been reported. We show analytically that a weak temperature dependence results from the inclusion of multiple loop graphs in a previously-derived graphical expansion. This is confirmed by numerical simulations on two controlled approximations to the 2dXY model: the Harmonic and ``Harmonic XY models. The Harmonic model has no Kosterlitz-Thouless-Berezinskii (KTB) transition and the PDF becomes progressively less skewed with increasing temperature until it closely approximates a Gaussian function above T ~ 4pi. Near to that temperature we find some evidence of a phase transition, although our observations appear to exclude a thermodynamic singularity.
134 - John Cardy 2014
We consider a quantum quench in a finite system of length $L$ described by a 1+1-dimensional CFT, of central charge $c$, from a state with finite energy density corresponding to an inverse temperature $betall L$. For times $t$ such that $ell/2<t<(L-e ll)/2$ the reduced density matrix of a subsystem of length $ell$ is exponentially close to a thermal density matrix. We compute exactly the overlap $cal F$ of the state at time $t$ with the initial state and show that in general it is exponentially suppressed at large $L/beta$. However, for minimal models with $c<1$ (more generally, rational CFTs), at times which are integer multiples of $L/2$ (for periodic boundary conditions, $L$ for open boundary conditions) there are (in general, partial) revivals at which $cal F$ is $O(1)$, leading to an eventual complete revival with ${cal F}=1$. There is also interesting structure at all rational values of $t/L$, related to properties of the CFT under modular transformations. At early times $t!ll!(Lbeta)^{1/2}$ there is a universal decay ${cal F}simexpbig(!-!(pi c/3)Lt^2/beta(beta^2+4t^2)big)$. The effect of an irrelevant non-integrable perturbation of the CFT is to progressively broaden each revival at $t=nL/2$ by an amount $O(n^{1/2})$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا