ﻻ يوجد ملخص باللغة العربية
At the Forschungszentrum Juelich (FZJ) we have started a long-term program that aims to determine beyond-the-Standard-Model (BSM) matrix elements using the gradient flow, and to understand the impact of BSM physics in nucleon and nuclear observables. Using the gradient flow, we propose to calculate the QCD component of key beyond the Standard Model (BSM) matrix elements related to quark and strong theta CP violation and the strange content within the nucleon. The former set of matrix elements impacts our understanding of Electric Dipole Moments (EDMs) of nucleons and nuclei (a key signature of BSM physics), while the latter contributes to elastic recoil of Dark Matter particles off nucleons and nuclei. If successful, these results will lay the foundation for extraction of BSM observables from future low-energy, high-intensity and high-accuracy experimental measurements.
We calculate---for the first time in three-flavor lattice QCD---the hadronic matrix elements of all five local operators that contribute to neutral $B^0$- and $B_s$-meson mixing in and beyond the Standard Model. We present a complete error budget for
Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using the technique of lattice QCD have developed to a point where they are beginning to connect fundamental aspects of nuclear physics to the underlying degrees of freedom of
We use lattice QCD to calculate the B-mixing hadronic matrix elements for a basis of effective four-quark operators that spans the space of all possible contributions in, and beyond, the Standard Model. We present results for the SU(3)-breaking ratio
We report on an ongoing calculation of hadronic matrix elements needed to parameterize K-Kbar mixing in generic BSM scenarios, using domain wall fermions (DWF) at two lattice spacings. Recent work by the SWME collaboration shows a significant disagre
We present results from a calculation of beyond the standard model (BSM) kaon mixing including data physical with light quark masses. We simulate $N_f=2+1$ QCD with Iwasaki gauge and domain wall fermion action on 8 ensembles, spanning 3 lattice spaci