ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-stage magneto-optical trapping and narrow-line cooling of $^6$Li atoms to high phase-space density

152   0   0.0 ( 0 )
 نشر من قبل Kai Dieckmann
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an experimental study of peak and phase-space density of a two-stage magneto-optical trap (MOT) of 6-Li atoms, which exploits the narrower $2S_{1/2}rightarrow 3P_{3/2}$ ultra-violet (UV) transition at 323 nm following trapping and cooling on the more common D2 transition at 671 nm. The UV MOT is loaded from a red MOT and is compressed to give a high phase-space density up to $3times 10^{-4}$. Temperatures as low as 33 $mu$K are achieved on the UV transition. We study the density limiting factors and in particular find a value for the light-assisted collisional loss coefficient of $1.3 pm0.4times10^{-10},textrm{cm}^3/textrm{s}$ for low repumping intensity.



قيم البحث

اقرأ أيضاً

Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by compet ition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin-polarized with temperatures reaching below 2 microkelvin. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.
227 - A. Frisch , K. Aikawa , M. Mark 2012
We report on the experimental realization of a robust and efficient magneto-optical trap for erbium atoms, based on a narrow cooling transition at 583nm. We observe up to $N=2 times 10^{8}$ atoms at a temperature of about $T=15 mu K$. This simple sch eme provides better starting conditions for direct loading of dipole traps as compared to approaches based on the strong cooling transition alone, or on a combination of a strong and a narrow kHz transition. Our results on Er point to a general, simple and efficient approach to laser cool samples of other lanthanide atoms (Ho, Dy, and Tm) for the production of quantum-degenerate samples.
We demonstrate a continuously loaded $^{88}mathrm{Sr}$ magneto-optical trap (MOT) with a steady-state phase-space density of $1.3(2) times 10^{-3}$. This is two orders of magnitude higher than reported in previous steady-state MOTs. Our approach is t o flow atoms through a series of spatially separated laser cooling stages before capturing them in a MOT operated on the 7.4-kHz linewidth Sr intercombination line using a hybrid slower+MOT configuration. We also demonstrate producing a Bose-Einstein condensate at the MOT location, despite the presence of laser cooling light on resonance with the 30-MHz linewidth transition used to initially slow atoms in a separate chamber. Our steady-state high phase-space density MOT is an excellent starting point for a continuous atom laser and dead-time free atom interferometers or clocks.
We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumpi ng and stimulated optical transitions, combined with magnetic forces can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultra-cold atoms and phase-space density, with lower required laser power and reduced complexity.
139 - Y. Li , J. Wu , G. Feng 2015
We report enhanced three-dimensional degenerated Raman sideband cooling (3D DRSC) of caesium (Cs) atoms in a standard single-cell vapour-loading magneto-optical trap. Our improved scheme involves using a separate repumping laser and optimized lattice detuning. We load $1.5 times 10^7$ atoms into the Raman lattice with a detuning of -15.5 GHz (to the ground F = 3 state). Enhanced 3D DRSC is used to cool them from 60 $mu$K to 1.7 $mu$K within 12 ms and the number of obtained atoms is about $1.2 times 10^7$. A theoretical model is proposed to simulate the measured number of trapped atoms. The result shows good agreement with the experimental data. The technique paves the way for loading a large number of ultracold Cs atoms into a crossed dipole trap and efficient evaporative cooling in a single-cell system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا