ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Accretion Scheme of the Dipping X-ray Binary 4U 1915-05 with Suzaku

129   0   0.0 ( 0 )
 نشر من قبل Zhongli Zhang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dipping low-mass X-ray binary 4U 1915-05 was observed by Suzaku on 2007 November 8 for a net exposure of 39 ksec. It was detected by the XIS with a 0.8-10 keV signal rate of 9.84+-0.01 cts/s per camera, and HXD-PIN with a 12-45 keV signal rate of 0.29+/-0.01 cts/s. After removing the periodic dips and an X-ray burst, the 0.8 - 45 keV continuum was successfully described by an optically thick disk emission with an inner-disk temperature ~ 0.7 keV and a neutron-star blackbody emission with a temperature ~ 1.3 keV, on condition that the blackbody component, or possibly the disk emission too, is significantly Comptonized. This successful modeling is consistent with 4U 1915-05 being in a high-soft state in this observation, and implies that its broadband spectrum can be interpreted in the same scheme as for many non-dipping Low-mass X-ray binaries in the soft state. Its bolometric luminosity (~ 0.02 times the Eddington limit) is relatively low for the soft state, but within a tolerance, if considering the distance and inclination uncertainties. As a high-inclination binary, this source exhibited stronger Comptonization effect, with a larger Comptonizing y-parameter, compared to low and medium inclination binaries. This suggests that the Comptonizing coronae of these objects in the soft state is in an oblate (rather than spherical) shape, extending along the accretion disk plane, because the y-parameter would not depend on the inclination if the corona were spherical.

قيم البحث

اقرأ أيضاً

120 - Elena Seifina 2016
We present an X-ray spectral analysis of the high-mass binary 4U~1700-37 during its hard-soft state evolution. We use the BeppoSAX, Suzaku and RXTE (Rossi X-ray Timing Explorer), Suzaku and BeppoSAX observations for this investigation. We argue that the X-ray broad-band spectra during all spectral states can be adequately reproduced by a model, consisting of a low-temperature Blackbody component, two Comptonized components both due to the presence of a Compton cloud (CC) that up-scatters seed photons of $T_{s1}$~< 1.4 keV, and $T_{s2}<$1 keV, and an iron-line component. We find using this model that the photon power-law index is almost constant, $Gamma_{1}sim 2$ for all spectral states. However, $Gamma_{2}$ shows a behavior depending on the spectral state. Namely, $Gamma_{2}$ is quasi-constant at the level of $Gamma_{2}sim 2$ while the CC plasma temperature $kT^{(2)}_e$ is less than 40 keV; on the other hand, $Gamma_{2}$ is in the range of $1.3<Gamma_{2}<2$, when $kT^{(2)}_e$ is greater than 40 keV. We explain this quasi-stability of $Gamma$ during most of hard-soft transitions of 4U~1700-37 in a framework of the model in which the resulting spectrum is described by two Comptonized components. We find that these Comptonized spectral components of the HMXB 4U~1700-37 are similar to those previously found in NS sources. This index dependence versus both mass accretion rate and $kT_e$ revealed in 4U~1700-37 is a universal observational evidence for the presence of a NS in 4U 1700-37.
We analyse ~ 360 ks of archival data from the Rossi X-Ray Timing Explorer (RXTE) of the 21 hr orbital period dipping low-mass X-ray binary 4U 1624-49. We find that outside the dips the tracks in the colour-colour and hardness-intensity diagrams (CDs and HIDs) are reminiscent of those of atoll sources in the middle and upper parts of the banana branch. The tracks show secular shifts up to ~ 10%. We study the power spectrum of 4U 1624-49 as a function of the position in the CD. This is the first time power spectra of this source are presented. No quasi-periodic oscillations (QPOs) are found. The power spectra are dominated by very low frequency noise (VLFN), characteristic for atoll sources in the banana state, and band limited noise (BLN) which is not reliably detected but may, uncharacteristically, strengthen and increase in frequency with spectral hardness. The VLFN fits to a power law, which becomes steeper when the source moves to the harder part of the CD. We conclude that 4U 1624-49 is an atoll source which in our observations is in the upper banana branch. Combining this with the high (0.5-0.7 L_Edd) luminosity, the long-term flux stability of the source as seen with the RXTE All-Sky Monitor (ASM), and with the fact that it is an X-ray dip source, we conclude that 4U 1624-49 is most likely a GX atoll source such as GX 3+1 and GX 9+9, but seen edge on.
The anomalous X-ray pulsar 4U 0142+61 was observed with Suzaku on 2007 August 15 for a net exposure of -100 ks, and was detected in a 0.4 to ~70 keV energy band. The intrinsic pulse period was determined as 8.68878 pm 0.00005 s, in agreement with an extrapolation from previous measurements. The broadband Suzaku spectra enabled a first simultaneous and accurate measurement of the soft and hard components of this object by a single satellite. The former can be reproduced by two blackbodies, or slightly better by a resonant cyclotron scattering model. The hard component can be approximated by a power-law of photon index Gamma h ~0.9 when the soft component is represented by the resonant cyclotron scattering model, and its high-energy cutoff is constrained as >180 keV. Assuming an isotropic emission at a distance of 3.6 kpc, the unabsorbed 1-10 keV and 10-70 keV luminosities of the soft and hard components are calculated as 2.8e+35 erg s^{-1} and 6.8e+34 erg s^{-1}, respectively. Their sum becomes ~10^3 times as large as the estimated spin-down luminosity. On a time scale of 30 ks, the hard component exhibited evidence of variations either in its normalization or pulse shape.
Periodic dips observed in approx. 20% of low-mass X-ray binaries are thought to arise from obscuration of the neutron star by the outer edge of the accretion disk. We report the detection with the Rossi X-ray Timing Explorer of two dipping episodes i n Aql X-1, not previously a known dipper. The X-ray spectrum during the dips exhibited an elevated neutral column density, by a factor between 1 and almost two orders of magnitude. Dips were not observed in every cycle of the 18.95-hr orbit, so that the estimated frequency for these events is 0.10 (+0.07,-0.05)/cycle. This is the first confirmed example of intermittent dipping in such a system. Assuming that the dips in Aql X-1 occur because the system inclination is intermediate between the non-dipping and dipping sources, implies a range of 72-79 deg. for the source. This result lends support for the presence of a massive (> 2 M_sun) neutron star in Aql X-1, and further implies that approx. 30 additional LMXBs may have inclinations within this range, raising the possibility of intermittent dips in those systems also. Thus, we searched for dips from 24 other bursting systems, without success. For the system with the largest number of dip phases covered, 4U 1820-303, the nondetection implies a 95% upper limit to the dip frequency of 1.4E-3/cycle.
55 - P. Reig 2016
The source 4U 1901+03 is a high-mass X-ray pulsar than went into outburst in 2003. Observation performed with the Rossi X-ray Timing Explorer showed spectral and timing variability, including the detection of flares, quasi-periodic oscillations, comp lex changes in the pulse profiles, and pulse phase dependent spectral variability. We re-analysed the data covering the 2003 X-ray outburst and focused on several aspects of the variability that have not been discussed so far. These are the 10 keV feature and the X-ray spectral states and their association with accretion regimes, including the transit to the propeller state at the end of the outburst. We find that 4U 1901+03 went through three accretion regimes over the course of the X-ray outburst. At the peak of the outburst and for a very short time, the X-ray flux may have overcome the critical limit that marks the formation of a radiative shock at a certain distance above the neutron star surface. Most of the time, however, the source is in the subcritical regime. Only at the end of the outburst, when the luminosity decreased below ~10^{36} (d/10 kpc)^2 erg/s, did the source enter the propeller regime. Evidence for the existence of these regimes comes from the pulse profiles, the shape of the hardness-intensity diagram, and the correlation of various spectral parameters with the flux. The 10 keV feature appears to strongly depend on the X-ray flux and on the pulse phase, which opens the possibility to interpret this feature as a cyclotron line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا