ترغب بنشر مسار تعليمي؟ اضغط هنا

The identification of dust heating mechanisms in nearby galaxies using Herschel 160/250 and 250/350 micron surface brightness ratios

108   0   0.0 ( 0 )
 نشر من قبل George J. Bendo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examined variations in the 160/250 and 250/350 micron surface brightness ratios within 24 nearby (<30 Mpc) face-on spiral galaxies observed with the Herschel Space Observatory to identify the heating mechanisms for dust emitting at these wavelengths. The analysis consisted of both qualitative and quantitative comparisons of the 160/250 and 250/350 micron ratios to H alpha and 24 micron surface brightnesses, which trace the light from star forming regions, and 3.6 micron emission, which traces the light from the older stellar populations of the galaxies. We find broad variations in the heating mechanisms for the dust. In one subset of galaxies, we found evidence that emission at <=160 microns (and in rare cases potentially at <=350 microns) originates from dust heated by star forming regions. In another subset, we found that the emission at >=250 microns (and sometimes at >=160 microns) originates from dust heated by the older stellar population. In the rest of the sample, either the results are indeterminate or both of these stellar populations may contribute equally to the global dust heating. The observed variations in dust heating mechanisms does not necessarily match what has been predicted by dust emission and radiative transfer models, which could lead to overestimated dust temperatures, underestimated dust masses, false detections of variability in dust emissivity, and inaccurate star formation rate measurements.



قيم البحث

اقرأ أيضاً

We present a pan-chromatic analysis of an unprecedented sample of 1402 250 micron-selected galaxies at z < 0.5 (mean z = 0.24) from the Herschel-ATLAS survey. We complement our Herschel 100-500 micron data with UV-K-band photometry from the Galaxy An d Mass Assembly (GAMA) survey and apply the MAGPHYS energy-balance technique to produce pan-chromatic SEDs for a representative sample of 250 micron selected galaxies spanning the most recent 5 Gyr of cosmic history. We derive estimates of physical parameters, including star formation rates, stellar masses, dust masses and infrared luminosities. The typical H-ATLAS galaxy at z < 0.5 has a far-infrared luminosity in the range 10^10 - 10^12 Lsolar (SFR: 1-50 Msolar/yr) thus is broadly representative of normal star forming galaxies over this redshift range. We show that 250 micron-selected galaxies contain a larger mass of dust at a given infra-red luminosity or star formation rate than previous samples selected at 60 micron from IRAS. We derive typical SEDs for H-ATLAS galaxies, and show that the emergent SED shape is most sensitive to specific star formation rate. The optical-UV SEDs also become more reddened due to dust at higher redshifts. Our template SEDs are significantly cooler than existing infra-red templates. They may therefore be most appropriate for inferring total IR luminosities from moderate redshift submillimetre selected samples and for inclusion in models of the lower redshift submillimetre galaxy populations.
We investigate the multiplicity of extragalactic sources detected by the Herschel Space Observatory in the COSMOS field. Using 3.6- and 24-$mu$m catalogues, in conjunction with 250-$mu$m data from Herschel, we seek to determine if a significant fract ion of Herschel sources are composed of multiple components emitting at 250 $mu$m. We use the XID+ code, using Bayesian inference methods to produce probability distributions of the possible contributions to the observed 250-$mu$m flux for each potential component. The fraction of Herschel flux assigned to the brightest component is highest for sources with total 250-$mu$m fluxes < 45 mJy; however, the flux in the brightest component is still highest in the brightest Herschel sources. The faintest 250-$mu$m sources (30-45 mJy) have the majority of their flux assigned to a single bright component; the second brightest component is typically significantly weaker, and contains the remainder of the 250-$mu$m source flux. At the highest 250-$mu$m fluxes (45-110 mJy), the brightest and second brightest components are assigned roughly equal fluxes, and together are insufficient to reach 100 per cent of the 250-$mu$m source flux. This indicates that additional components are required, beyond the brightest two components, to reproduce the observed flux. 95 per cent of the sources in our sample have a second component that contains more than 10 per cent of the total source flux. Particularly for the brightest Herschel sources, assigning the total flux to a single source may overestimate the flux contributed by around 150 per cent.
Aims. We aim to study the 250 micron luminosity function (LF) down to much fainter luminosities than achieved by previous efforts. Methods. We developed a modified stacking method to reconstruct the 250 micron LF using optically selected galaxies f rom the SDSS survey and Herschel maps of the GAMA equatorial fields and Stripe 82. Our stacking method not only recovers the mean 250 micron luminosities of galaxies that are too faint to be individually detected, but also their underlying distribution functions. Results. We find very good agreement with previous measurements in the overlapping luminosity range. More importantly, we are able to derive the LF down to much fainter luminosities (around 25 times fainter) than achieved by previous studies. We find strong positive luminosity evolution propto (1 + z)^4.89pm1.07 and moderate negative density evolution propto (1 + z)^-1.02pm0.54 over the redshift range z=[0.02, 0.5].
254 - M. Bethermin , H. Dole , M. Cousin 2010
BLAST (Balloon-borne Large-Aperture Submillimeter Telescope) performed the first deep and wide extragalactic survey at 250, 350 and 500 um. The extragalactic number counts at these wavelengths are important constraints for modeling the infrared galax ies evolution. [...] We use three methods to identify the submillimeter sources. 1) Blind extraction. [...] The photometry is computed with a new simple and quick PSF fitting routine (FASTPHOT). [...] 2) Extraction with prior. [...] 3) A stacking analysis. [...] With the blind extraction, we reach 97, 83 and 76 mJy at resp. 250, 350 and 500 um with a 95% completeness. With the prior extraction, we reach 76 mJy (resp. 63 and 49 mJy) at 250 um (resp. 350 and 500 um). With the stacking analysis, we reach 6.2 mJy (resp. 5.2 and 3.5 mJy) at 250 um (resp. 350 and 500 um). The differential submillimeter number counts are derived, and start showing a turnover at flux densities decreasing with increasing wavelength. There is a very good agreement with the P(D) analysis of Patanchon et al. (2009). At bright fluxes (>100 mJy), the Lagache et al. (2004) and Le Borgne et al. (2009) models slightly overestimate the observed counts, but there is a very good agreement near the peak of differential number counts. [...] Counts are available at: http://www.ias.u-psud.fr/irgalaxies/downloads.php
Emission at far-infrared wavelengths makes up a significant fraction of the total light detected from galaxies over the age of Universe. Herschel provides an opportunity for studying galaxies at the peak wavelength of their emission. Our aim is to pr ovide a benchmark for models of galaxy population evolution and to test pre-existing models of galaxies. With the Herschel Multi-tiered Extra-galactic survey, HerMES, we have observed a number of fields of different areas and sensitivity using the SPIRE instrument on Herschel. We have determined the number counts of galaxies down to ~20 mJy. Our constraints from directly counting galaxies are consistent with, though more precise than, estimates from the BLAST fluctuation analysis. We have found a steep rise in the Euclidean normalised counts at <100 mJy. We have directly resolved 15% of the infrared extra-galactic background at the wavelength near where it peaks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا