ترغب بنشر مسار تعليمي؟ اضغط هنا

Induced radioactivity analysis for the NSRL Linac in China using Monte Carlo simulations and gamma-spectroscopy

349   0   0.0 ( 0 )
 نشر من قبل Lijuan He
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 200-MeV electron linac of the National Synchrotron Radiation Laboratory (NSRL) located in Hefei is one of the earliest high-energy electron linear accelerators in China. The electrons are accelerated to 200 MeV by five acceleration tubes and are collimated by scrapers. The scraper aperture is smaller than the acceleration tube one, so some electrons hit the materials when passing through them. These lost electrons cause induced radioactivity mainly due to bremsstrahlung and photonuclear reaction. This paper describes a study of induced radioactivity for the NSRL Linac using FLUKA simulations and gamma-spectroscopy. The measurements showed that electrons were lost mainly at the scraper. So the induced radioactivity of the NSRL Linac is mainly produced here. The radionuclide types were simulated using the FLUKA Monte Carlo code and the results were compared against measurements made with a High Purity Germanium (HPGe) gamma spectrometer. The NSRL linac had been retired because of upgrading last year. The removed components were used to study induced radioactivity. The radionuclides confirmed by the measurement are: $^{57}$Ni, $^{52}$Mn, $^{51}$Cr, $^{58}$Co, $^{56}$Co, $^{57}$Co, $^{54}$Mn, $^{60}$Co and $^{22}$Na, the first eight nuclides of which are predicted by FLUKA simulation. The research will provide the theoretical basis for the similar accelerator decommissioning plan, and is significant for accelerator structure design, material selection and radiation protection design.



قيم البحث

اقرأ أيضاً

Monte-Carlo generator with photon jets radiation in collinear regions for the process eegg is described in detail. Radiative corrections in the first order of $alpha$ are treated exactly. Large leading logarithmic corrections coming from collinear re gions are taken into account in all orders of $alpha$ by applying the Structure Function approach. Theoretical precision of the cross section with radiative corrections is estimated to be 0.2%. This process is considered as an additional tool to measure luminosity in forthcoming experiments with the CMD-3 detector at the $e^+e^-$ collider VEPP-2000.
Extensive beam-based feedback systems are planned as an integral part of the Next Linear Collider (NLC) control system. Wakefield effects are a significant influence on the feedback design, imposing both architectural and algorithmic constraints. Stu dies are in progress to assure the optimal selection of devices and to refine and confirm the algorithms for the system design. We show the results of initial simulations, along with evaluations of system response for various conditions of ground motion and other operational disturbances.
A radiation gene box (RGB) onboard the SJ-10 satellite is a device carrying mice and drosophila cells to determine the biological effects of space radiation environment. The shielded fluxes of different radioactive sources were calculated and the lin ear energy transfers of gamma-rays, electrons, protons and alpha-particles in tissue were acquired using A-150 tissue-equivalent plastic. Then, a conceptual model of a space radiation instrument employing three semiconductor sub-detectors for deriving the charged and uncharged radiation environment of the RGB was designed. The energy depositions in the three sub-detectors were classified into fifteen channels (bins) in an algorithm derived from the Monte Carlo method. The physical feasibility of the conceptual instrument was also verified by Monte Carlo simulations.
295 - Zheng Gao , Yuan He , Xian-Wu Wang 2016
Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the Accelerator Driven Sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sci ences, between October and December 2014. During these tests experiments were performed with CW operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple PID feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of PI feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper.
The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by hi gh-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventional linacs. Improvements have been made to the Advanced Photon Source (APS) injector linac in order to produce and characterize high-brightness beams. Specifically, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) FEL in support of fourth-generation light source research. The enhancements to the linac technical and diagnostic capabilities that allowed for self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm are described. Recent results, including details on technical systems improvements and electron beam measurement techniques, will be discussed. The linac is capable of accelerating beams to over 650 MeV. The nominal FEL beam parameters used are as follows: 217 MeV energy; 0.1-0.2% rms energy spread; 4-8 um normalized rms emittance; 80-120 A peak current from a 0.2-0.7 nC charge at a 2-7 ps FWHM bunch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا