ﻻ يوجد ملخص باللغة العربية
We present an efficient tool capable of measuring the spectral correlations between photons emerging from a Hong-Ou-Mandel interferometer. We show that for our spectrally factorizable spontaneous downconversion source the Hong-Ou-Mandel interference visibility decreases as the photons frequency spread is increased to a maximum of 165 nm. Unfiltered, we obtained a visibility of $92.0 pm 0.2 %$. The maximum visibility was $97 pm 0.2 %$ after applying filtering. We show that the tool can be useful for the study of spectral correlations that impair high-visibility and high-fidelity multi-source interference applications.
Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum
Hong-Ou-Mandel (HOM) interference, i.e. the bunching of indistinguishable photons at a beam splitter is a staple of quantum optics and lies at the heart of many quantum sensing approaches and recent optical quantum computers. Although originally prop
Hong-Ou-Mandel interference is a cornerstone of optical quantum technologies. We explore both theoretically and experimentally how the nature of unwanted multi-photon components of single photon sources affect the interference visibility. We apply ou
We propose an experimental scheme to implement a second-order nonlocal superposition operation and its variants by way of Hong-Ou-Mandel interference. The second-order coherent operations enable us to generate a NOON state with high particle number i
We discuss characterization of single-photon wave packets by measuring Hong-Ou-Mandel interference with a weak coherent pulse. A complete multimode calculation is presented and effects of multiphoton terms in the coherent field as well as the impact