ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattering of two photons on a quantum emitter in a one-dimensional waveguide: Exact dynamics and induced correlations

115   0   0.0 ( 0 )
 نشر من قبل Anders Nysteen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a wavefunction approach to describe the scattering of two photons on a quantum emitter embedded in a one-dimensional waveguide. Our method allows us to calculate the exact dynamics of the complete system at all times, as well as the transmission properties of the emitter. We show that the non-linearity of the emitter with respect to incoming photons depends strongly on the emitter excitation and the spectral shape of the incoming pulses, resulting in transmission of the photons which depends crucially on their separation and width. In addition, for counter-propagating pulses, we analyze the induced level of quantum correlations in the scattered state, and we show that the emitter behaves as a non-linear beam-splitter when the spectral width of the photon pulses is similar to the emitter decay rate.

قيم البحث

اقرأ أيضاً

We analytically treat the scattering of two counter-propagating photons on a two-level emitter embedded in an optical waveguide. We find that the non-linearity of the emitter can give rise to significant pulse-dependent directional correlations in th e scattered photonic state, which could be quantified via a reduction in coincident clicks in a Hong-Ou-Mandel measurement setup, analogous to a linear beam splitter. Changes to the spectra and phase of the scattered photons, however, would lead to reduced interference with other photons when implemented in a larger optical circuit. We introduce suitable fidelity measures which account for these changes, and find that high values can still be achieved even when accounting for all properties of the scattered photonic state.
We consider a two-dimensional extension of the 1D waveguide quantum electrodynamics and investigate the nature of linear excitations in two-dimensional arrays of qubits coupled to networks of chiral waveguides. We show that the combined effects of ch irality and long-range photon mediated qubit-qubit interactions lead to the emergence of the two-dimensional flat bands in the polaritonic spectrum, corresponding to slow strongly correlated light.
60 - Lan Zhou , Z. R. Gong , Yu-xi Liu 2008
We analyze coherent transport of photons, which propagate in a one-dimensional coupled-resonator waveguide (CRW) and are scattered by a controllable two-level system located inside the CRW. Our approach, which uses discrete coordinates, unifies low a nd high energy effective theories for single photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of photons. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits
We theoretically demonstrate dynamically selective bidirectional emission and absorption of a single itinerant microwave photon in a waveguide. The proposed device is an artificial molecule composed of two qubits coupled to a waveguide a quarter-wave length apart. By using simulations based on the input--output theory, we show that upon preparing an appropriate entangled state of the two qubits, a photon is emitted directionally as a result of the destructive interference occurring either at the right or left of the qubits. Moreover, we demonstrate that this artificial molecule possesses the capability of absorbing and transmitting an incoming photon on-demand, a feature essential to the creation of a fully inter-connected one-dimensional quantum network, in which quantum information can be exchanged between any two given nodes.
We provide a complete and exact quantum description of coherent light scattering in a one-dimensional multi-mode transmission line coupled to a two-level emitter. Using recently developed scattering approach we discuss transmission properties, power spectrum, the full counting statistics and the entanglement entropy of transmitted and reflected states of light. Our approach takes into account spatial parameters of an incident coherent pulse as well as waiting and counting times of a detector. We describe time evolution of the power spectrum as well as observe deviations from the Poissonian statistics for reflected and transmitted fields. In particular, the statistics of reflected photons can change from sub-Poissonian to super-Poissonian for increasing values of the detuning, while the statistics of transmitted photons is strictly super-Poissonian in all parametric regimes. We study the entanglement entropy of some spatial part of the scattered pulse and observe that it obeys the area laws and that it is bounded by the maximal entropy of the effective four-level system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا