ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulence sets the initial conditions for star formation in high-pressure environments

347   0   0.0 ( 0 )
 نشر من قبل Jill Rathborne
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P/k < 10^5 K cm^-3) molecular clouds in the solar neighbourhood. However, it is unknown if these theories extend to clouds in high-pressure (P/k > 10^7 K cm^-3) environments, like those in the Galaxys inner 200 pc Central Molecular Zone (CMZ) and in the early Universe. Here we present ALMA 3mm dust continuum emission within a cloud, G0.253+0.016, which is immersed in the high-pressure environment of the CMZ. While the log-normal shape and dispersion of its column density PDF is strikingly similar to those of solar neighbourhood clouds, there is one important quantitative difference: its mean column density is 1--2 orders of magnitude higher. Both the similarity and difference in the PDF compared to those derived from solar neighbourhood clouds match predictions of turbulent cloud models given the high-pressure environment of the CMZ. The PDF shows a small deviation from log-normal at high column densities confirming the youth of G0.253+0.016. Its lack of star formation is consistent with the theoretically predicted, environmentally dependent volume density threshold for star formation which is orders of magnitude higher than that derived for solar neighbourhood clouds. Our results provide the first empirical evidence that the current theoretical understanding of molecular cloud structure derived from the solar neighbourhood also holds in high-pressure environments. We therefore suggest that these theories may be applicable to understand star formation in the early Universe.

قيم البحث

اقرأ أيضاً

Massive clumps tend to fragment into clusters of cores and condensations, some of which form high-mass stars. In this work, we study the structure of massive clumps at different scales, analyze the fragmentation process, and investigate the possibili ty that star formation is triggered by nearby HII regions. We present a high angular resolution study of a sample of 8 massive proto-cluster clumps. Combining infrared data, we use few-arcsecond resolution radio- and millimeter interferometric data to study their fragmentation and evolution. Our sample is unique in the sense that all the clumps have neighboring HII regions. Taking advantage of that, we test triggered star formation using a novel method where we study the alignment of the centres of mass traced by dust emission at multiple scales. The eight massive clumps have masses ranging from 228 to 2279 $M_odot$. The brightest compact structures within infrared bright clumps are typically associated with embedded compact radio continuum sources. The smaller scale structures of $R_{rm eff}$ $sim$ 0.02 pc observed within each clump are mostly gravitationally bound and massive enough to form at least a B3-B0 type star. Many condensations have masses larger than 8 $M_odot$ at small scale of $R_{rm eff}$ $sim$ 0.02 pc. Although the clumps are mostly infrared quiet, the dynamical movements are active at clump scale ($sim$ 1 pc). We studied the spatial distribution of the gas conditions detected at different scales. For some sources we find hints of external triggering, whereas for others we find no significant pattern that indicates triggering is dynamically unimportant. This probably indicates that the different clumps go through different evolutionary paths. In this respect, studies with larger samples are highly desired.
The stellar initial mass function (IMF) is a fundamental property of star formation, offering key insight into the physics driving the process as well as informing our understanding of stellar populations, their by-products, and their impact on the s urrounding medium. While the IMF appears to be fairly uniform in the Milky Way disk, it is not yet known how the IMF might behave across a wide range of environments, such as those with extreme gas temperatures and densities, high pressures, and low metallicities. We discuss new opportunities for measuring the IMF in such environments in the coming decade with JWST, WFIRST, and thirty-meter class telescopes. For the first time, we will be able to measure the high-mass slope and peak of the IMF via direct star counts for massive star clusters across the Milky Way and Local Group, providing stringent constraints for star formation theory and laying the groundwork for understanding distant and unresolved stellar systems.
We present a new high-resolution study of pre-protocluster regions in tracers exclusively probing the coldest and dense gas (NH_2D). The data are used to constrain the chemical, thermal, kinematic, and physical conditions (i.e., densities) in G29.96e and G35.20w. NH_3, NH_2D, and continuum emission were mapped using the VLA, and PdBI. In particular, NH_2D is a unique tracer of cold, precluster gas at high densities, while NH_3 traces both the cold and warm gas of modest-to-high densities. In G29.96e, Spitzer images reveal two massive filaments, one of them in extinction (infrared dark cloud). We observe very low line widths in NH_3 (FWHM <1km/s). These multi-wavelength, high-resolution observations of high-mass pre-protocluster regions show that the target regions are characterized by (i) turbulent Jeans fragmentation of massive clumps into cores (from a Jeans analysis); (ii) cores and clumps that are over-bound/subvirial, i.e. turbulence is too weak to support them against collapse, meaning that (iii) some models of monolithic cloud collapse are quantitatively inconsistent with data; (iv) accretion from the core onto a massive star, which can (for observed core sizes and velocities) be sustained by accretion of envelope material onto the core, suggesting that (similar to competitive accretion scenarios) the mass reservoir for star formation is not necessarily limited to the natal core; (v) high deuteration ratios ([NH_2D/NH_3]>6%), which make the above discoveries possible; (vi) and the destruction of NH_2D toward embedded stars. [abridged]
G0.253+0.016 is a molecular clump that appears to be on the verge of forming a high mass, Arches-like cluster. Here we present new ALMA observations of its small-scale (~0.07 pc) 3mm dust continuum and molecular line emission. The data reveal a compl ex network of emission features, the morphology of which ranges from small, compact regions to extended, filamentary structures that are seen in both emission and absorption. The dust column density is well traced by molecules with higher excitation energies and critical densities, consistent with a clump that has a denser interior. A statistical analysis supports the idea that turbulence shapes the observed gas structure within G0.253+0.016. We find a clear break in the turbulent power spectrum derived from the optically thin dust continuum emission at a spatial scale of ~0.1 pc, which may correspond to the spatial scale at which gravity has overcome the thermal pressure. We suggest that G0.253+0.016 is on the verge of forming a cluster from hierarchical, filamentary structures that arise from a highly turbulent medium. Although the stellar distribution within Arches-like clusters is compact, centrally condensed and smooth, the observed gas distribution within G0.253+0.016 is extended, with no high-mass central concentration, and has a complex, hierarchical structure. If this clump gives rise to a high-mass cluster and its stars are formed from this initially hierarchical gas structure, then the resulting cluster must evolve into a centrally condensed structure via a dynamical process.
356 - Edwin A. Bergin 2007
Cold dark clouds are nearby members of the densest and coldest phase in the galactic interstellar medium, and represent the most accessible sites where stars like our Sun are currently being born. In this review we discuss recent progress in their st udy, including the newly discovered infrared dark clouds that are likely precursors to stellar clusters. At large scales, dark clouds present filamentary mass distributions with motions dominated by supersonic turbulence. At small, sub-parsec scales, a population of subsonic starless cores provides a unique glimpse of the conditions prior to stellar birth. Recent studies of starless cores reveal a combination of simple physical properties together with a complex chemical structure dominated by the freeze-out of molecules onto cold dust grains. Elucidating this combined structure is both an observational and theoretical challenge whose solution will bring us closer to understanding how molecular gas condenses to form stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا