ترغب بنشر مسار تعليمي؟ اضغط هنا

The simulation of loss of U ions due to charge changing processes in the CSRm ring

141   0   0.0 ( 0 )
 نشر من قبل Wenheng Zheng
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Significant beam loss caused by the charge exchange processes and ions impact induced outgassing play a crucial role in the limitation of the maximum number of accumulated heavy ions during the high intensity operation in the accelerators. With the aim to control beam loss due to charge exchange processes and to confine the generated desorption gas, the tracking of the loss positions and installing the absorber blocks with low-desorption rate material at appropriate locations in the CSRm ring will be taken. The loss simulation of U ions having lost an electron will be presented in this report and the calculation of the collimation efficiency of the CSRm ring will be continued in the future.



قيم البحث

اقرأ أيضاً

As part of the R&D for the 50 MeV ThomX Compton source project, we have studied the effect of several beam dynamics processes on the evolution of the beam in the ring. The processes studied include among others Compton scattering, intrabeam scatterin g, coherent synchrotron radiation. We have performed extensive simulations of a full injection/extraction cycle (400000 turns). We show how each of these processes degrades the flux of photons produced and how a feedback system contributes to recovering most of the flux.
Charge-breeding processes in Electron Cyclotron Resonance Ion Sources are numerically simulated by using the target helium plasma parameters obtained with NAM-ECRIS code. Breeding efficiency is obtained as a function of 1+ ion injection energy for so me alkali ion beams. Time dependencies of extracted ions are calculated; typical times for reaching saturation in currents are in the range of few tens of milliseconds. Role of charge-exchange processes in breeding of ions is discussed. Recycling of ions on the source walls is shown to be important.
In preparation for a demonstration of optical stochastic cooling in the Cornell Electron Storage Ring (CESR) we have developed a particle tracking simulation to study the relevant beam dynamics. Optical radiation emitted in the pickup undulator gives a momentum kick to that same particle in the kicker undulator. The optics of the electron bypass from pickup to kicker couples betatron amplitude and momentum offset to path length so that the momentum kick reduces emittance and momentum spread. Nearby electrons contribute an incoherent noise. Layout of the bypass line is presented that accommodates optics with a range of transverse and longitudinal cooling parameters. The simulation is used to determine cooling rates and their dependence on bunch and lattice parameters for bypass optics with distinct emittance and momentum acceptance.
In the past years, the interest in the laser-driven acceleration of heavy ions in the mass range of A ~ 200 has been increasing due to promising application ideas like the fission-fusion nuclear reaction mechanism, aiming at the production of neutron -rich isotopes relevant for the astrophysical r-process nucleosynthesis. In this paper, we report on the laser acceleration of gold ions to beyond 7 MeV/u, exceeding for the first time an important prerequisite for this nuclear reaction scheme. Moreover, the gold ion charge states have been detected with an unprecedented resolution, which enables the separation of individual charge states up to 4 MeV/u. The recorded charge-state distributions show a remarkable dependency on the target foil thickness and differ from simulations, lacking a straight-forward explanation by the established ionization models.
We report on studies of the loss maps for particles travelling from the end of the ThomXs linac along the transfer line to the end of the ring first turn in preparation of the machine commissioning. ThomX is a 50-MeV-electron accelerator prototype wh ich will use Compton backscattering to generate a high flux of hard X-rays. The accelerator tracking code MadX is used to simulate electrons propagation and compute losses. These maps may be projected at any localisation along the bunch path or plotted along the bunch path. This information is particularly relevant at the locations of the monitoring devices (screens, position monitors,...) where loss predictions will be compared with measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا