ﻻ يوجد ملخص باللغة العربية
We have detected substructure within the smooth scattering disk of the celebrated Galactic Center radio source Sagittarius A* (SgrA*). We observed this structure at 1.3 cm wavelength with the Very Long Baseline Array together with the Green Bank Telescope, on baselines of up to 3000 km, long enough to completely resolve the average scattering disk. Such structure is predicted theoretically, as a consequence of refraction by large-scale plasma fluctuations in the interstellar medium. Along with the much-studied $theta_mathrm{d}propto lambda^2$ scaling of angular broadening $theta_mathrm{d}$ with observing wavelength $lambda$, our observations indicate that the spectrum of interstellar turbulence is shallow, with an inner scale larger than 300 km. The substructure is consistent with an intrinsic size of about 1 mas at 1.3 cm wavelength, as inferred from deconvolution of the average scattering. Further observations of the substructure can set stronger constraints on the properties of scattering material and on the intrinsic size of SgrA*. These constraints will guide understanding of effects of scatter-broadening and emission physics of the black hole, in images with the Event Horizon Telescope at millimeter wavelengths.
We have resolved the scatter-broadened image of PSR B0329+54 and detected substructure within it. These results are not influenced by any extended structure of a source but instead are directly attributed to the interstellar medium. We obtained these
The electromagnetic counterpart to the Galactic center supermassive black hole, Sgr A*, has been observed in the near-infrared for over 20 years and is known to be highly variable. We report new Keck Telescope observations showing that Sgr A* reached
We report new infrared measurements of the supermassive black hole at the Galactic Center, Sgr A*, over a decade that was previously inaccessible at these wavelengths. This enables a variability study that addresses variability timescales that are te
In general relativity, the angular radius of the shadow of a black hole is primarily determined by its mass-to-distance ratio and depends only weakly on its spin and inclination. If general relativity is violated, however, the shadow size may also de
The motion data of the S-stars around the Galactic center gathered in the last 28 yr imply that Sgr A* hosts a supermassive compact object of about $4times 10^6$ $Modot$, a result awarded with the Nobel Prize in Physics 2020. A non-rotating black hol