ترغب بنشر مسار تعليمي؟ اضغط هنا

OTA based 200 G{Omega} resistance on 700 {mu}m2 in 180 nm CMOS for neuromorphic applications

47   0   0.0 ( 0 )
 نشر من قبل Christian Mayr
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

Generating an exponential decay function with a time constant on the order of hundreds of milliseconds is a mainstay for neuromorphic circuits. Usually, either subthreshold circuits or RC-decays based on transconductance amplifiers are used. In the latter case, transconductances in the 10 pS range are needed. However, state-of-the-art low-transconductance amplifiers still require too much circuit area to be applicable in neuromorphic circuits where >100 of these time constant circuits may be required on a single chip. We present a silicon verified operational transconductance amplifier that achieves a gm of 5 pS in only 700 {mu}m2, a factor of 10-100 less area than current examples. This allows a high-density integration of time constant circuits in target appliations such as synaptic learning or as driving circuit for neuromorphic memristor arrays.



قيم البحث

اقرأ أيضاً

Conventional CMOS technology operated at cryogenic conditions has recently attracted interest for its uses in low-noise electronics. We present one of the first characterizations of 180 nm CMOS technology at a temperature of 100 mK, extracting I/V ch aracteristics, threshold voltages, and transconductance values, as well as observing their temperature dependence. We find that CMOS devices remain fully operational down to these temperatures, although we observe hysteresis effects in some devices. The measurements described in this paper can be used to inform the future design of CMOS devices intended to be operated in this deep cryogenic regime.
We report on the experimental study made on a successive prototype of High-Voltage CMOS (HV-CMOS) ATLASPix2 sensor for the tracking detector application, developed with 180 nm feature size. These sensors are to qualify mainly the peripheral data proc essing blocks (e.g. Command Decoder, Trigger Buffer, etc.). It is a smaller version of 24 X 36 pixelated sensor in comparison to the earlier generation of ATLASPix1 fabricated in both ams AG, Austria, and TSI Semiconductors, USA. While ams produced ATLASPix2 showed breakdown voltage 50 V in nonirradiated condition as it was seen on its predecessors ATLASpix1, TSI produced prototypes reported breakdown voltage greater than 100 V. The chosen wafer of MCz 20 Ohm.cm P-type substrate resistivity can deplete a few tenths of um, where the process-driven surface damage can have a greater impact on device operating conditions before and after irradiation. In an aim to understand device intrinsic performance at the irradiated case, a dedicated neutron irradiation campaign has been made at JSI for different fluences. Characterizations have been performed at different temperatures after irradiation to analyze the leakage current and breakdown voltage before and after irradiation. TSI prototypes showed a breakdown voltage decrease 90 V due to impact ionization and enhanced effective doping concentration. Results demonstrated for the neutron-irradiated devices up to the fluence of 2 X 10^15 neq/cm2 can still safely be operated at a voltage high enough to allow for high efficiency. Accelerated Annealing steps also made on selective irradiated ATLASPix2 samples, equivalent to more than two years of room-temperature annealing (at 20 degC), and they showed the reassuring expected breakdown voltage increase and damage constant rate alpha^* (geometry dependent) decrease, driven by the beneficial annealing.
High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) based on the 180 nm HV-CMOS process have been proposed to realize thin, fast and highly integrated pixel sensors. The MuPix7 prototype, fabricated in the commercial AMS H18 process, features a fu lly integrated on-chip readout, i.e. hit-digitization, zero suppression and data serialization. It is the first fully monolithic HV-CMOS pixel sensor that has been tested for the use in high irradiation environments like HL-LHC. We present results from laboratory and test beam measurements of MuPix7 prototypes irradiated with neutrons (up to $5.0cdot10^{15}{,rm{n}_{rm{eq}}/cm^2}$) and protons (up to $7.8cdot 10^{15} ,rm{protons}/cm^2$) and compare the performance with non-irradiated sensors. Efficiencies well above 90 % at noise rates below 200 Hz per pixel are measured. A time resolution better than 22 ns is measured for all tested settings and sensors, even at the highest irradiation fluences. The data transmission at 1.25 Gbit/s and the on-chip PLL remain fully functional.
Neuronal firing activities have attracted a lot of attention since a large population of spatiotemporal patterns in the brain is the basis for adaptive behavior and can also reveal the signs for various neurological disorders including Alzheimers, sc hizophrenia, epilepsy and others. Here, we study the dynamics of a simple neuronal network using different sets of settings on a neuromorphic chip. We observed three different types of collective neuronal firing activities, which agree with the clinical data taken from the brain. We constructed a brain phase diagram and showed that within the weak noise region, the brain is operating in an expected noise-induced phase (N-phase) rather than at a so-called self-organized critical boundary. The significance of this study is twofold: first, the deviation of neuronal activities from the normal brain could be symptomatic of diseases of the central nervous system, thus paving the way for new diagnostics and treatments; second, the normal brain states in the N-phase are optimal for computation and information processing. The latter may provide a way to establish powerful new computing paradigm using collective behavior of networks of spiking neurons.
A switched-capacitor (SC) neuromorphic system for closed-loop neural coupling in 28 nm CMOS is presented, occupying 600 um by 600 um. It offers 128 input channels (i.e. presynaptic terminals), 8192 synapses and 64 output channels (i.e. neurons). Biol ogically realistic neuron and synapse dynam- ics are achieved via a faithful translation of the behavioural equations to SC circuits. As leakage currents significantly affect circuit behaviour at this technology node, dedicated compensation techniques are employed to achieve biological-realtime operation, with faithful reproduction of time constants of several 100 ms at room temperature. Power draw of the overall system is 1.9 mW.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا