ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling Planets and Stellar Activity for Gliese 667C

109   0   0.0 ( 0 )
 نشر من قبل Paul Robertson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gliese 667C is an M1.5V star with a multi-planet system, including planet candidates in the habitable zone (HZ). The exact number of planets in the system is unclear, because the existing radial velocity (RV) measurements are known to contain contributions from stellar magnetic activity. Following our analysis of Gliese 581 (Robertson et al. 2014), we have analyzed the effect of stellar activity on the HARPS/HARPS-TERRA RVs of GJ 667C, finding significant RV-activity correlation when using the width (FWHM) of the HARPS cross-correlation function to trace magnetic activity. When we correct for this correlation, we confirm the detections of the previously-observed planets b and c in the system, while simultaneously ascribing the RV signal near 90 days (planet d) to an artifact of the stellar rotation. We are unable to confirm the existence of the additional RV periodicities described in Anglada-Escude et al. (2013) in our activity-corrected data.

قيم البحث

اقرأ أيضاً

The M dwarf Gliese 581 is believed to host four planets, including one (GJ 581d) near the habitable zone that could possibly support liquid water on its surface if it is a rocky planet. The detection of another habitable-zone planet--GJ 581g--is disp uted, as its significance depends on the eccentricity assumed for d. Analyzing stellar activity using the H-alpha line, we measure a stellar rotation period of 130+/-2 days and a correlation for H-alpha modulation with radial velocity. Correcting for activity greatly diminishes the signal of GJ 581d (to 1.5 sigma), while significantly boosting the signals of the other known super-Earth planets. GJ 581d does not exist, but is an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g.
Robertson et al.(Reports, July 25 2014, p440-444)(1) claimed that activity-induced variability is responsible for the Doppler signal of the proposed planet candidate GJ 581d. We point out that their analysis using periodograms of residual data is inc orrect, further promoting inadequate tools. Since the claim challenges the viability of the method to detect exo-Earths, we urge for more appropriate analyses (see appendix).
Anglada-Escude and Tuomi question the statistical rigor of our analysis while ignoring the stellar activity aspects that we present. Although we agree that improvements in multiparametric radial velocity (RV) modeling are necessary for the detection of Earth-mass planets, the key physical points we raised were not challenged. We maintain that activity on Gliese 581 induces RV shifts that were interpreted as exoplanets.
[Abridged] Context. Stellar activity is an important source of systematic errors and uncertainties in the characterization of exoplanets. Most of the techniques used to correct for this activity focus on an ad hoc data reduction. Aims. We have develo ped a software for the combined fit of transits and stellar activity features in high-precision long-duration photometry. Our aim is to take advantage of the modelling to derive correct stellar and planetary parameters, even in the case of strong stellar activity. Methods. We use an analytic approach to model the light curve. The code KSint, modified by adding the evolution of active regions, is implemented into our Bayesian modelling package PASTIS. The code is then applied to the light curve of CoRoT-2. The light curve is divided in segments to reduce the number of free parameters needed by the fit. We perform a Markov chain Monte Carlo analysis in two ways. In the first, we perform a global and independent modelling of each segment of the light curve, transits are not normalized and are fitted together with the activity features, and occulted features are taken into account during the transit fit. In the second, we normalize the transits with a model of the non-occulted activity features, and then we apply a standard transit fit, which does not take the occulted features into account. Results. Our model recovers the activity features coverage of the stellar surface and different rotation periods for different features. We find variations in the transit parameters of different segments and show that they are likely due to the division applied to the light curve. Neglecting stellar activity or even only bright spots while normalizing the transits yields a $sim 1.2sigma$ larger and $2.3sigma$ smaller transit depth, respectively. The stellar density also presents up to $2.5sigma$ differences depending on the normalization technique...
Since the discovery of the transiting super-Earth CoRoT-7b, several investigations have yielded different results for the number and masses of planets present in the system, mainly owing to the stars high level of activity. We re-observed CoRoT-7 in January 2012 with both HARPS and CoRoT, so that we now have the benefit of simultaneous radial-velocity and photometric data. This allows us to use the off-transit variations in the stars light curve to estimate the radial-velocity variations induced by the suppression of convective blueshift and the flux blocked by starspots. To account for activity-related effects in the radial-velocities which do not have a photometric signature, we also include an additional activity term in the radial-velocity model, which we treat as a Gaussian process with the same covariance properties (and hence the same frequency structure) as the light curve. Our model was incorporated into a Monte Carlo Markov Chain in order to make a precise determination of the orbits of CoRoT-7b and CoRoT-7c. We measure the masses of planets b and c to be 4.73 +/- 0.95 Mearth and 13.56 +/- 1.08 Mearth, respectively. The density of CoRoT-7b is (6.61 +/- 1.72)(Rp/1.58 Rearth)^(-3) g.cm^(-3), which is compatible with a rocky composition. We search for evidence of an additional planet d, identified by previous authors with a period close to 9 days. We are not able to confirm the existence of a planet with this orbital period, which is close to the second harmonic of the stellar rotation at around 7.9 days. Using Bayesian model selection we find that a model with two planets plus activity-induced variations is most favoured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا