ﻻ يوجد ملخص باللغة العربية
With the overwhelming success in the field of quantum information in the last decades, the quest for a Quantum Neural Network (QNN) model began in order to combine quantum computing with the striking properties of neural computing. This article presents a systematic approach to QNN research, which so far consists of a conglomeration of ideas and proposals. It outlines the challenge of combining the nonlinear, dissipative dynamics of neural computing and the linear, unitary dynamics of quantum computing. It establishes requirements for a meaningful QNN and reviews existing literature against these requirements. It is found that none of the proposals for a potential QNN model fully exploits both the advantages of quantum physics and computing in neural networks. An outlook on possible ways forward is given, emphasizing the idea of Open Quantum Neural Networks based on dissipative quantum computing.
Utilizing quantum computers to deploy artificial neural networks (ANNs) will bring the potential of significant advancements in both speed and scale. In this paper, we propose a kind of quantum spike neural networks (SNNs) as well as comprehensively
We propose to use neural networks to estimate the rates of coherent and incoherent processes in quantum systems from continuous measurement records. In particular, we adapt an image recognition algorithm to recognize the patterns in experimental sign
We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems. Based on a modified restricted Boltzmann machine (RBM) wavefunction ansatz, the proposed algorithm can be efficiently implemented i
Quantum machine learning is one of the most promising applications of quantum computing in the Noisy Intermediate-Scale Quantum(NISQ) era. Here we propose a quantum convolutional neural network(QCNN) inspired by convolutional neural networks(CNN), wh
Artificial neural networks bridge input data into output results by approximately encoding the function that relates them. This is achieved after training the network with a collection of known inputs and results leading to an adjustment of the neuro