ترغب بنشر مسار تعليمي؟ اضغط هنا

The Illustris simulation: the evolving population of black holes across cosmic time

124   0   0.0 ( 0 )
 نشر من قبل Debora Sijacki
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the properties of black holes and their host galaxies across cosmic time in the Illustris simulation. Illustris is a large scale cosmological hydrodynamical simulation which resolves a (106.5 Mpc)^3 volume with more than 12 billion resolution elements and includes state-of-the-art physical models relevant for galaxy formation. We find that the black hole mass density for redshifts z = 0 - 5 and the black hole mass function at z = 0 predicted by Illustris are in very good agreement with the most recent observational constraints. We show that the bolometric and hard X-ray luminosity functions of AGN at z = 0 and 1 reproduce observational data very well over the full dynamic range probed. Unless the bolometric corrections are largely underestimated, this requires radiative efficiencies to be on average low, epsilon_r <= 0.1, noting however that in our model radiative efficiencies are degenerate with black hole feedback efficiencies. Cosmic downsizing of the AGN population is in broad agreement with the findings from X-ray surveys, but we predict a larger number density of faint AGN at high redshifts than currently inferred. We also study black hole -- host galaxy scaling relations as a function of galaxy morphology, colour and specific star formation rate. We find that black holes and galaxies co-evolve at the massive end, but for low mass, blue and star-forming galaxies there is no tight relation with either their central black hole masses or the nuclear AGN activity.



قيم البحث

اقرأ أيضاً

One of the main themes in extragalactic astronomy for the next decade will be the evolution of galaxies over cosmic time. Many future observatories, including JWST, ALMA, GMT, TMT and E-ELT will intensively observe starlight over a broad redshift ran ge, out to the dawn of the modern Universe when the first galaxies formed. It has, however, become clear that the properties and evolution of galaxies are intimately linked to the growth of their central black holes. Understanding the formation of galaxies, and their subsequent evolution, will therefore be incomplete without similarly intensive observations of the accretion light from supermassive black holes (SMBH) in galactic nuclei. To make further progress, we need to chart the formation of typical SMBH at z>6, and their subsequent growth over cosmic time, which is most effectively achieved with X-ray observations. Recent technological developments in X-ray optics and instrumentation now bring this within our grasp, enabling capabilities fully matched to those expected from flagship observatories at longer wavelengths.
We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted onto BHs, traces the energy deposited into their environment and, c onsequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z~2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive halos present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z=3 and z=2 respectively.
Supermassive black holes are located at the center of most, if not all, massive galaxies. They follow close correlations with global properties of their host galaxies (scaling relations), and are thought to play a crucial role in galaxy evolution. Ye t, we lack a complete understanding of fundamental aspects of their growth across cosmic time. In particular, we still do not understand: (1) whether black holes or their host galaxies grow faster and (2) what is the maximum mass that black holes can reach. The high angular resolution capability and sensitivity of 30-m class telescopes will revolutionize our understanding of the extreme end of the black hole and galaxy mass scale. With such facilities, we will be able to dynamically measure masses of the largest black holes and characterize galaxy properties out to redshift $z sim 1.5$. Together with the evolution of black hole-galaxy scaling relations since $z sim 1.5$, the maximum mass black hole will shed light on the main channels of black hole growth.
We investigate the abundance of Super-Massive Black Hole (SMBH) seeds in primordial galaxy halos. We explore the assumption that dark matter halos outgrowing a critical halo mass M_c have some probability p of having spawned a SMBH seed. Current obse rvations of local, intermediate-mass galaxies constrain these parameters: For $M_c=10^{11}M_odot$, all halos must be seeded, but when adopting smaller M_c masses the seeding can be much less efficient. The constraints also put lower limits on the number density of black holes in the local and high-redshift Universe. Reproducing z~6 quasar space densities depends on their typical halo mass, which can be constrained by counting nearby Lyman Break Galaxies and Lyman Alpha Emitters. For both observables, our simulations demonstrate that single-field predictions are too diverse to make definitive statements, in agreement with mixed claims in the literature. If quasars are not limited to the most massive host halos, they may represent a tiny fraction (~10^-5) of the SMBH population. Finally, we produce a wide range of predictions for gravitational events from SMBH mergers. We define a new diagnostic diagram for LISA to measure both SMBH space density and the typical delay between halo merger and black hole merger. While previous works have explored specific scenarios, our results hold independent of the seed mechanism, seed mass, obscuration, fueling methods and duty cycle.
At the end of its life, a very massive star is expected to collapse into a black hole. The recent detection of an 85 Msun black hole from the gravitational wave event GW 190521 appears to present a fundamental problem as to how such heavy black holes exist above the approximately 50 Msun pair-instability limit where stars are expected to be blown to pieces with no remnant left. Using MESA, we show that for stellar models with non-extreme assumptions, 90..100 Msun stars at reduced metallicity (Z/Zsun < 0.1) can produce blue supergiant progenitors with core masses sufficiently small to remain below the fundamental pair-instability limit, yet at the same time lose an amount of mass via stellar winds that is small enough to end up in the range of an impossible 85 Msun black hole. The two key points are the proper consideration of core overshooting and stellar wind physics with an improved scaling of mass loss with iron (Fe) contents characteristic for the host galaxy metallicity. Our modelling provides a robust scenario that not only doubles the maximum black hole mass set by pair instability, but also allows us to probe the maximum stellar black hole mass as a function of metallicity and Cosmic time in a physically sound framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا