ترغب بنشر مسار تعليمي؟ اضغط هنا

Cartan-Eilenberg complexes and Auslander categories

258   0   0.0 ( 0 )
 نشر من قبل Wei Ren
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $R$ be a commutative noetherian ring with a semi-dualizing module $C$. The Auslander categories with respect to $C$ are related through Foxby equivalence: $xymatrix@C=50pt{mathcal {A}_C(R) ar@<0.4ex>[r]^{Cotimes^{mathbf{L}}_{R} -} & mathcal {B}_C(R) ar@<0.4ex>[l]^{mathbf{R}mathrm{Hom}_{R}(C, -)}}$. We firstly intend to extend the Foxby equivalence to Cartan-Eilenberg complexes. To this end, C-E Auslander categories, C-E $mathcal{W}$ complexes and C-E $mathcal{W}$-Gorenstein complexes are introduced, where $mathcal{W}$ denotes a self-orthogonal class of $R$-modules. Moreover, criteria for finiteness of C-E Gorenstein dimensions of complexes in terms of resolution-free characterizations are considered.



قيم البحث

اقرأ أيضاً

It is well known that a resolving subcategory $mathcal{A}$ of an abelian subcategory $mathcal{E}$ induces several derived equivalences: a triangle equivalence $mathbf{D}^-(mathcal{A})to mathbf{D}^-(mathcal{E})$ exists in general and furthermore restr icts to a triangle equivalence $mathbf{D}^{mathsf{b}}(mathcal{A})to mathbf{D}^{mathsf{b}}(mathcal{E})$ if $operatorname{res.dim}_{mathcal{A}}(E)<infty$ for any object $Ein mathcal{E}$. If the category $mathcal{E}$ is uniformly bounded, i.e. $operatorname{res.dim}_{mathcal{A}}(mathcal{E})<infty$, one obtains a triangle equivalence $mathbf{D}(mathcal{A})to mathbf{D}(mathcal{E})$. In this paper, we show that all of the above statements hold for preresolving subcategories of (one-sided) exact categories. By passing to a one-sided language, one can remove the assumption that $mathcal{A}subseteq mathcal{E}$ is extension-closed completely from the classical setting, yielding easier criteria and more examples. To illustrate this point, we consider the Isbell category $mathcal{I}$ and show that $mathcal{I}subseteq mathsf{Ab}$ is preresolving but $mathcal{I}$ cannot be realized as an extension-closed subcategory of an exact category. We also consider a criterion given by Keller to produce derived equivalences of fully exact subcategories. We show that this criterion fits into the framework of preresolving subcategories by considering the relative weak idempotent completion of said subcategory.
175 - Boris Shoikhet 2013
We prove a version of the Deligne conjecture for $n$-fold monoidal abelian categories $A$ over a field $k$ of characteristic 0, assuming some compatibility and non-degeneracy conditions for $A$. The output of our construction is a weak Leinster $(n,1 )$-algebra over $k$, a relaxed version of the concept of Leinster $n$-algebra in $Alg(k)$. The difference between the Leinster original definition and our relaxed one is apparent when $n>1$, for $n=1$ both concepts coincide. We believe that there exists a functor from weak Leinster $(n,1)$-algebras over $k$ to $C(E_{n+1},k)$-algebras, well-defined when $k=mathbb{Q}$, and preserving weak equivalences. For the case $n=1$ such a functor is constructed in [Sh4] by elementary simplicial methods, providing (together with this paper) a complete solution for 1-monoidal abelian categories. Our approach to Deligne conjecture is divided into two parts. The first part, completed in the present paper, provides a construction of a weak Leinster $(n,1)$-algebra over $k$, out of an $n$-fold monoidal $k$-linear abelian category (provided the compatibility and non-degeneracy condition are fulfilled). The second part (still open for $n>1$) is a passage from weak Leinster $(n,1)$-algebras to $C(E_{n+1},k)$-algebras. As an application, we prove that the Gerstenhaber-Schack complex of a Hopf algebra over a field $k$ of characteristic 0 admits a structure of a weak Leinster (2,1)-algebra over $k$ extending the Yoneda structure. It relies on our earlier construction [Sh1] of a 2-fold monoidal structure on the abelian category of tetramodules over a bialgebra.
Given a bounded-above cochain complex of modules over a ring, it is standard to replace it by a projective resolution, and it is classical that doing so can be very useful. Recently, a modified version of this was introduced in triangulated categor ies other than the derived category of a ring. A triangulated category is emph{approximable} if this modified procedure is possible. Not surprisingly this has proved a powerful tool. For example: the fact that the derived category of a quasi compact, separated scheme is approximable has led to major improvements on old theorems due to Bondal, Van den Bergh and Rouquier. In this article we prove that, under weak hypotheses, the recollement of two approximable triangulated categories is approximable. In particular, this shows many of the triangulated categories that arise in noncommutative algebraic geometry are approximable.
200 - Boris Shoikhet 2018
Given two small dg categories $C,D$, defined over a field, we introduce their (non-symmetric) twisted tensor product $Coverset{sim}{otimes} D$. We show that $-overset{sim}{otimes} D$ is left adjoint to the functor $Coh(D,-)$, where $Coh(D,E)$ is the dg category of dg functors $Dto E$ and their coherent natural transformations. This adjunction holds in the category of small dg categories (not in the homotopy category of dg categories $mathrm{Hot}$). We show that for $C,D$ cofibrant, the adjunction descends to the corresponding adjunction in the homotopy category. Then comparison with a result of To{e}n shows that, for $C,D$ cofibtant, $Coverset{sim}{otimes} D$ is isomorphic to $Cotimes D$, as an object of the homotopy category $mathrm{Hot}$.
One-sided exact categories are obtained via a weakening of a Quillen exact category. Such one-sided exact categories are homologically similar to Quillen exact categories: a one-sided exact category $mathcal{E}$ can be (essentially uniquely) embedded into its exact hull ${mathcal{E}}^{textrm{ex}}$; this embedding induces a derived equivalence $textbf{D}^b(mathcal{E}) to textbf{D}^b({mathcal{E}}^{textrm{ex}})$. Whereas it is well known that Quillens obscure axioms are redundant for exact categories, some one-sided exact categories are known to not satisfy the corresponding obscure axiom. In fact, we show that the failure of the obscure axiom is controlled by the embedding of $mathcal{E}$ into its exact hull ${mathcal{E}}^{textrm{ex}}.$ In this paper, we introduce thr
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا